

中国认可

国际石山

6 EXTIN

CNAS 16791 **TEST REPORT** NRS 097-2-1:2017 Test report for Grid interconnection of embedded generation Part 2: Small-scale embedded generation Section 1: Utility interface Report Number.....: BL-DG2060517-B01 Date of issue.....: Jul. 09, 2020 Total number of pages 97 Name of Testing Laboratory Shenzhen BALUN Technology Co., Ltd preparing the Report: Applicant's name Shenzhen SOFAR SOLAR Co., Ltd. Address.....: 401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China. Test specification: Standard NRS 097-2-1:2017 Test procedure: Commissioned test Non-standard test method: N/A Test item description Hybrid Inverter Trade Mark.....: Manufacturer: Same as the applicant Model/Type reference HYD 20KTL-3PH, HYD 15KTL-3PH, HYD 10KTL-3PH, HYD 8KTL-3PH, HYD 6KTL-3PH, HYD 5KTL-3PH Ratings: See copy of marking label and model list. Testing Laboratory: Shenzhen BALUN Technology Co., Ltd. Testing location/ address:: Room 104, 204, 205, Building 1, No. 6, Industrial South Road. Songshan Lake District, Dongguan, Guangdong, China Tested by (name, function, Colin Chen /Engineer signature).....: Approved by (name, function, Simon Qi /Chief Engineer signature).....: mon

List of Attachments (including a total number of pages in each attachment):

ATTACHMENT 1 - EMC test report BL-DG2060517-401(40 pages)

ATTACHMENT 2 –Satey test report BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1(96 pages)

ATTACHMENT 3 –Islanding Test Report GZES200601936102(14 pages) ATTACHMENT 4 – Photo documentation (8 pages)

Summary of testing:

Attachments: The attachment 1,2,3 belongs to this main test report, details in below:

EMC test report of NRS 097-2-1:2017 Grid interconnection of embedded generation Part 2: Small-Scale embedded generation Section 1: Utility interface. Report number: BL-DG2060517-401, Issued by Shenzhen BALUN Technology Co., Ltd (CNAS L6791), Dated on Jul 09, 2020, total 40 pages.

Satey test report of IEC 62109-1:2010 Safety of power converters for use in photovoltaic power systems –Part 1: General requirements and IEC 62109-2:2011 Safety of power converters for use in photovoltaic power systems –Part 2: Particular requirements for inverters. Report number: BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1, Issued by Shenzhen BALUN Technology Co., Ltd (CNAS L6791), Dated on Jul 02, 2020, total 40 pages.

Islanding test report of IEC 62116:2014 Utility-interconnected photovoltaic inverters – Test procedure of islanding prevention measures. Report number: GZES20061936102, Issued by SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch(CNAS L0167), Dated on Jun 23, 2020, total 14 pages.

Tests performed (name of test and test clause):	Testing location:
4.1.2 Normal voltage operating range	All tests except Prevention of islanding as
4.1.3 Reference source impedance and short- circuit levels (fault levels)	described in Test Case and Measurement Sections were performed at the laboratory described on
4.1.5 Flicker	page 1.
4.1.6 Voltage unbalance	The Prevention of islanding is conducted in SGS-
4.1.7 Commutation notches	CSTC Standards Technical Services Co., Ltd. Guangzhou Branch
4.1.8 DC injection	
4.1.9 Normal frequency operating range	
4.1.10 Harmonics and waveform distortion	
4.1.11 Power factor	
4.1.13 Electromagnetic compatibility (EMC)	
4.2.2 Safety disconnect from utility network	
4.2.4 Response to utility recovery	
4.2.5 Isolation	
4.2.6 Earthing	
4.2.7 Short-circuit protection	
4.2.8 Maximum short-circuit contribution	
 For 4.1.13 and 4.2.2 Partial testing , please refer to the testing report for details. 	
Summary of compliance with National Difference	ces (List of countries addressed):

None

The product fulfils the requirements of NRS 097-2-1:2017.

Copy of marking plate: SSFAR SØFAR Hybrid Inverter Hybrid Inverter HYD 15KTL-3PH HYD 20KTL-3PH Model No: Model No: Model No: HYD 15KTL-3PH Max.DC Voltage 1000V MPPT Voltage Range 180-960V Max.Input Current 25/25A Max.PV lsc 30/30A Battery Voltage Range 180-800V Battery Voltage Range 180-800V Battery Wax. Charging Current 25/25A Battery Max. Discharging Current 25/25A Battery Max. Discharging Current 25/25A Nominal Grid/Back-up Voltage 3/N/PE, 380/400V Nominal Grid/Back-up Frequency 50/60Hz Max. Short Current 24A Max. Power Output to Grid 16500VA Max. Current from Grid 44A Max.DC Voltage 1000V MPPT Voltage Range 180~960V Max.InputCurrent 25/25A Max.PV lsc 30/30A Max. Input Current 25/25A Max. Input Current 25/25A Max. PV Isc 30/30A Battery Volsc 30/30A Battery Volsc 30/30A Battery Volsc 100-800V Battery Max. Charging Current 25/25A Nominal Grid/Back-up Voltage 3/N/PE, 380/400V Max. Current Output to Grid 32A Max. Short Current 32A Max. Power Output to Grid 2200VA Max. Power from Grid 40000VA Back-up Max. Output Current 22A Max. Power from Grid 40000VA Back-up Max. Output Current 22A Max. Power from Grid 40000VA Back-up Max. Output Current 22A Max. Power from Grid 400002VA Back-up Max. Output Current 22A Back-up Max. Output Power 22000VA Back-up Max. Output Current 28A <tr Max. Power Output to Grid 16500VA Max. Current from Grid 44A Max. Power from Grid 30000VA Back-up Max. Output Current 24A Back-up Max. Output Power 16500VA Power Factor 1(adjustable+/-0.8) Operating Temperature Range -30-+60°C Ingress Protection IP65 Protective Class Class1 Inverter Topology Non-isolated Z_source 1,05+j 0,32 ohm Overvoltage Category ACIII,DCII Manufacturer : Shenzhen SOFAR SOLAR Co.,Ltd. Address : 401, Building 4, AnTongDa Industrial Park, Manufacturer : Shenzhen SOFAR SOLAR Co.,Ltd. Address : 401, Building 4, AnTongDa Industrial Park, Address: 401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China BaoAn District, Shenzhen, China SAA VDE0126-1-1,VDE-AR-N4105 G98,G99,EN50438,AS4777,UTE C15-712-1 m SAA VDE0126-1-1,VDE-AR-N4105 G98,G99,EN50438,AS4777,UTE C15-712-1 💷 \Lambda C E 🗛 🖉 🖄 🛣 💷 🛆 🤇 🗲 🔬 🖉 🛣 SSFAR SØFAR Hybrid Inverter Hybrid Inverter Model No: HYD 10KTL-3PH Max.DC Voltage __1000V MPPT Voltage Range _180-960V Max.Input Current _25/25A Max.PV isc _30/30A Battery Type _Li-lon HYD 8KTL-3PH Model No: Max.DC Voltage 1000V MPPT Voltage Range 180~960V Max.Input Current 12.5/12.5A Max.PV Isc 15/15A Rattery Type L Jone Max. Input Current 12.5/12.5A Max.PV Isc 15/15A Battery Type Li-Ion Battery Wax. Charging Current 25A Battery Max. Charging Current 25A Nominal Grid/Back-up Voltage 3/N/PE, 380/400V Nominal Grid/Back-up Voltage 3/N/PE, 380/400V Nominal Grid/Back-up Voltage 3/N/PE, 380/400V Max. Discharging Current 13A Max. Current Output to Grid 24A Max. Power Output to Grid 24A Max. Power form Grid 16000VA Back-up Max. Output Current 13A Back-up Max. Output Power 8800VA Max. Power from Grid 16000VA Back-up Max. Output Current 13A Back-up Max. Output Power 8800VA Power Factor 1(adjustable+/-0.8) Operating Temperature Range -30+60°C Ingress Protection 1865 Protective Class Class1 Inverter Topology Non-isolated Z-source 1.05+j0.32 ohm Overvoltage Category ACIII,DCIII Manufacturer : Shenzhen SOFAR SOLAR Co., Ltd. </ta> Max.PV isc 30/30A Battery Type Li-lon Battery Wax.Charging Current 25/25A Battery Max.Charging Current 25/25A Battery Max.Discharging Current 25/25A Nominal Grid/Back-up Voltage 3/N/PE, 380/400V Nominal Grid/Back-up Voltage 3/N/PE, 380/400V Max.Current Output to Grid 16A Max.Current Output to Grid 16A Max.Power Output to Grid 1000VA Max.Power from Grid 29A Max.Power from Grid 20000VA Back-up Max.Output Current 16A Back-up Max.Output Current 16A Dower Factor 1(adjustable+/-0.8) Operating Temperature Range -30-460°C Inverter Topology Non-isolated Z-source 1,05+1,0,32 ohm Overvoltage Category ACIII,DCII Manufacturer : Shenzhen SOFAR SOLAR Co., Ltd. Address: 401 Non-Bond Max Manufacturer : Shenzhen SOFAR SOLAR Co.,Ltd. Manufacturer : Shenzhen SOFAR SOLAR Co.,Ltd. Address : 401, Building 4, AnTongDa Industrial Park, Address : 401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China SAA VDE0126-1-1, VDE-AR-N4105 District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China M VDF0126-1-1 VDF-AR-N4105 SAA G98,G99,EN50438,AS4777,UTE C15-712-1 G98,G99,EN50438,AS4777,UTE C15-712-1 💷 🛆 🤇 🗲 🛝 🖉 🛝 🖉 💷 🛆 🤇 🤇 🔬 🖉 🖾

Model No:	Inverter HYD 6KTL-3PH
Max.DC Voltage	1000
MPPT Voltage Range	180~960
Max. Input Current	12.5/12.5A
Max.PV Isc	15/15A
Battery Type	Li-lor
Battery Voltage Range	<u>180~800v</u>
Battery Max. Charging Curr	
Battery Max. Discharging C	
Nominal Grid/Back-up Vo	
Nominal Grid/Back-up Fr	
Max. Current Output to G	
Max. Short Current	104
Max. Power Output to Gri	
Max. Current from Grid	<u>17A</u>
Max. Power from Grid	12000VA
Back-up Max. Output Cur	
Back-up Max. Output Pow Power Factor	
	1(adjustable+/-0.8)
Operating Temperature R Ingress Protection	
Protective Class	IP65 Class
Inverter Topology	Non-isolate
Z source	1,05+j0,32 ohr
Overvoltage Category	AC III, DC I
	SOFAR SOLAR Co.,Ltd.
Address: 401, Building 4, A	
District 68, XingDong Comr	
BaoAn District, Shenzhen,	China 🧥
SAA VDE0126-1-1,VD G98,G99,EN50438,AS4777,U	

5 <u>Ø</u> F/	AR
Hybrid Inv	
Model No:	HYD 5KTL-3PH
Max.DC Voltage	1000V
MPPT Voltage Range	180~960V
Max. Input Current	12.5/12.5A
Max.PV lsc	15/15A
Battery Type	Li-Ion
Battery Voltage Range	180~800V
Battery Max. Charging Current	25A
Battery Max. Discharging Current	
Nominal Grid/Back-up Voltage	
Nominal Grid/Back-up Frequen	cy 50/60Hz
Max. Current Output to Grid	8 <u>A</u>
Max. Short Current	8Ā
Max. Power Output to Grid	5500VA
Max. Current from Grid	15A
Max. Power from Grid	10000VA
Back-up Max. Output Current	8 <u>A</u>
Back-up Max. Output Power	5500VA
Power Factor	1(adjustable+/-0.8)
Operating Temperature Range	-30~+60°C
Ingress Protection	IP65
Protective Class	Class I
Inverter Topology	Non-isolated
Z_source	1,05+j0,32 ohm
Overvoltage Category	AC III, DC II
Manufacturer : Shenzhen SOF	AR SOLAR Co.,Ltd.
Address: 401, Building 4, AnTong	
District 68, XingDong Community	XinAn Street,
BaoAn District, Shenzhen, China	11105
SAA VDE0126-1-1,VDE-AR-1 G98,G99,EN50438,AS4777,UTE C15	
G90,G99,EN00430,AS4777,UTE C15	
$ \perp \mathbf{i} / \mathbf{i} \in \mathcal{I} \circ$	

Test item particulars:	
Classification of installation and use	Fixed
Supply Connection	Permanent connection
:	
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing:	
Date of receipt of test item:	Jun. 04, 2019
Date (s) of performance of tests:	Jun. 06, 2019 to Jul. 03, 2020
General remarks:	
"(See Enclosure #)" refers to additional information ap "(See appended table)" refers to a table appended to the The tests results presented in this report relate only to the	ne report.
This report shall not be reproduced except in full without	ut the written approval of the testing laboratory.
List of test equipment must be kept on file and available	e for review.
Additional test data and/or information provided in the a Throughout this report a comma / point is used Determination of the test results includes consideration and methods.	as the decimal separator.
Manufacturer's Declaration per sub-clause 4.2.5 of	IECEE 02:
The application for obtaining a CB Test Certificate includes more than one factory location and a declaration from the Manufacturer stating that the sample(s) submitted for evaluation is (are) representative of the products from each factory has been provided	 ☐ Yes ☑ Not applicable
When differences exist; they shall be identified in the	he General product information section.
Name and address of factory (ies):	
	1F-6F, Building E, No. 1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City.

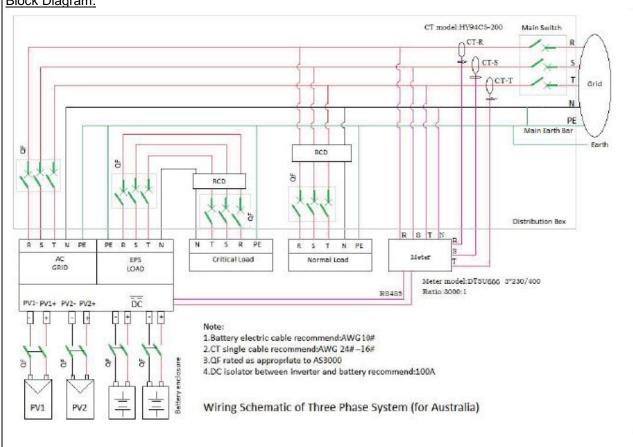
General product information:

Brief description:

The PCE under test (EUT) is Grid-connected Grid-Connected PV Inverter which utilizes the advanced power electronics conversion components such as MOSFET, IGBT, IPM to convert the variable DC power generated from the photovoltaic (PV) arrays to the stable utility AC power which can be fed into the commercial electrical grid.

The PCE under test is three-phase grid-connected Grid-Connected PV Inverter for solar power generation with the rating of 5kW, 6kW, 8kW, 10kW, 15kW and 20kW.

The external circuit breakers or fuses for PV array and Grid connection are required which the statements are provided in the installation manual.


The models of HYD 5KTL-3PH, HYD 6KTL-3PH, HYD 8KTL-3PH, HYD 10KTL-3PH, HYD 15KTL-3PH and HYD 20KTL-3PH are identical on topological schematic circuit diagram and control solution codes except for the type designation, the input/output rating. So there are some differences on the related power electronics components such as the inverter module, reactors and bus capacitors, etc. See the model differences list below for details.

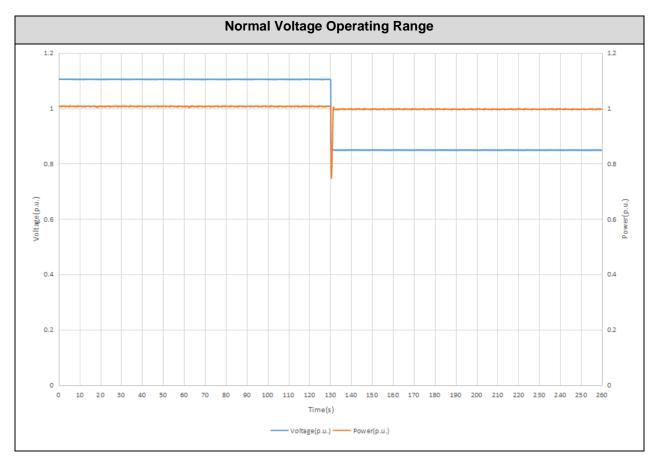
Model	HYD	HYD	HYD	HYD	HYD	HYD 5KTL-3PH				
Item	20KTL-3PH	15KTL-3PH	10KTL-3PH	8KTL-3PH	6KTL-3PH					
Recommende d Max.PV	30000Wp (15000Wp/	22500 Wp (11250Wp	15000Wp (7500Wp	12000Wp (6600Wp/66	9000Wp (6600Wp/66	7500Wp (6000Wp/60				
Power	15000Wp)	/11250Wp)	/7500Wp)	00Wp)	00Wp)	00Wp)				
Full power MPPT voltage range	450V~850V	350V~850V	220V~850V	360V~850V	320V~850V	250V~850V				
Battery Voltage Range for Full Load	400V~800V	300V~800V	200V~800V	320V~800V	240V~800V	200V~800V				
Nominal charging/disch arging power	20000W	15000W	10000W	8000W	6000W	5000W				
Nominal AC Power	20000W	15000W	10000W	8000W	6000W	5000W				
Max. AC Power Output to Utility Grid	22000VA	16500VA	11000VA	8800VA	6600VA	5500VA				
Max. AC Power from Utility Grid	40000VA	30000VA	20000VA	16000VA	12000VA	10000VA				
Max. AC Current Output to Utility Grid	32A	24A	16A	13A	10A	8A				
Max. AC Current from Utility Grid	58A	44A	29A	24A	17A	15A				
Max. output power	22000VA	16500VA	11000VA	8800VA	6600VA	5500VA				
Inverter inductance	0.87	6 mH	1.12	2 mH	1.5mH					

Unless otherwise specified, all the tests were conducted on the basic model of HYD 20KTL-3PH. The PCE does not provide galvanic separation between the PV input and AC output circuit (Non-isolation or transformer-less type).

The output circuit of each phase can be switched off by two relays in series for the redundant protection. When single-fault occurs to one relay, the other redundant one will still maintain the basic insulation between PV input and AC output circuit to the mains. All the relays have functional self-checking before the PCE starting.

Summary table of test items and results							
No.	Clause	Test description	Results				
1	4.1.2	Normal voltage operating range	Р				
2	4.1.3, 4.2.7 and 4.2.8	Maximum short-circuit contribution	Р				
3	4.1.5	Flicker	Р				
4	4.1.6	Voltage unbalance	Р				
5	4.1.7	Commutation notches	Р				
6	4.1.8 and 4.2.2.5	DC injection	Р				
7	4.1.9	Normal frequency operating range	Р				
8	4.1.10	Harmonics and waveform distortion	Р				
9	4.1.11	Power factor	Р				
10	4.1.12 and 4.2.4	Synchronization and Response to utility recovery	Р				
11	4.1.13	Electromagnetic compatibility (EMC)	Р				
12	4.1.14	Mains signalling (e.g. PLC and ripple control)	N/A				
13	4.2.2	Safety disconnect from utility network	Р				
14	4.2.5	Isolation	Р				
15	4.2.6	Earthing	Р				
16	4.2.7	Labelling	Р				
17	4.2.10	Robustness requirements	Р				

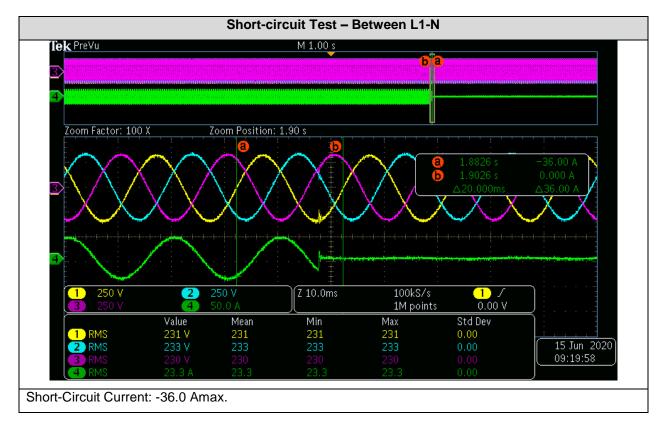
1. Normal voltage operating range


Normal voltage operating range tests have been measured according to Clause 4.1.2 of the standard.

In accordance with IEC 61727, utility-interconnected embedded generators do not normally regulate voltage, they inject current into the utility. Therefore, the voltage operating range for embedded generators is designed as protection which responds to abnormal utility network conditions and not as a voltage regulation function.

Voltage limits (p.u.)	Voltage measured (p.u.)	Disconnection
0.850(*)	0.848	No
1.100	1.104	No

(*) The unit cannot reach the maximum power due to the current limitation.


The results are offered in the table below:

2. Maximum short-circuit contribution

Maximum Short-circuit tests have been measured according to Clause 4.1.3, Clause 4.2.7 and 4.2.8 of the standard.

3. Flicker

The measurements of voltage fluctuations have been measured according to the paragraph 4.1.5 of the standard. Measurements must be taken for each phase.

The flicker test result as following:

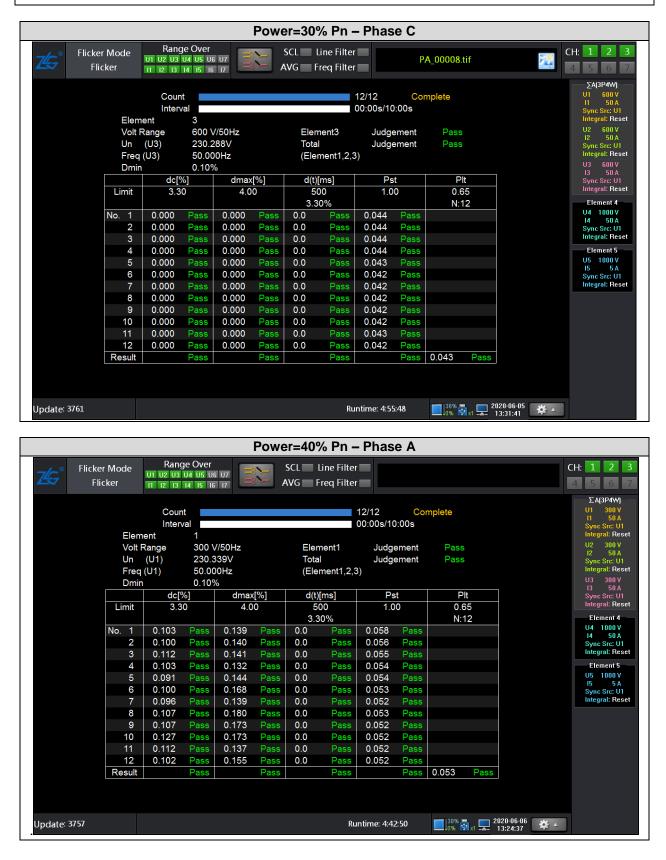
Pn(%)	Limit		10 %	20 %	30%	40 %
		Phase A	0.06	0.04	0.06	0.06
PST	≤ 0.35	Phase B	0.14	0.14	0.14	0.14
		Phase C	0.05	0.05	0.04	0.04
		Phase A	0.05	0.03	0.05	0.05
PLT	≤ 0.30	Phase B	0.14	0.14	0.14	0.14
		Phase C	0.05	0.05	0.04	0.04
Pn(%)	Limit		50 %	60 %	70%	80 %
		Phase A	0.07	0.04	0.04	0.05
PST	≤ 0.35	Phase B	0.14	0.14	0.14	0.14
		Phase C	0.06	0.05	0.05	0.06
		Phase A	0.06	0.03	0.04	0.04
PLT	≤ 0.30	Phase B	0.14	0.14	0.14	0.14
		Phase C	0.05	0.05	0.05	0.05
	P _n (%)	Limit		90 %	100 %	
			Phase A	0.08	0.08	
	PST	≤ 0.35	Phase B	0.16	0.15	

	Phase A	0.08	0.08
≤ 0.35	Phase B	0.16	0.15
	Phase C	0.07	0.07
	Phase A	0.08	0.07
≤ 0.30	Phase B	0.15	0.15
	Phase C	0.07	0.06
		≤ 0.35 Phase B Phase C Phase A ≤ 0.30 Phase B	≤ 0.35 Phase B 0.16 Phase C 0.07 Phase A 0.08 ≤ 0.30 Phase B 0.15

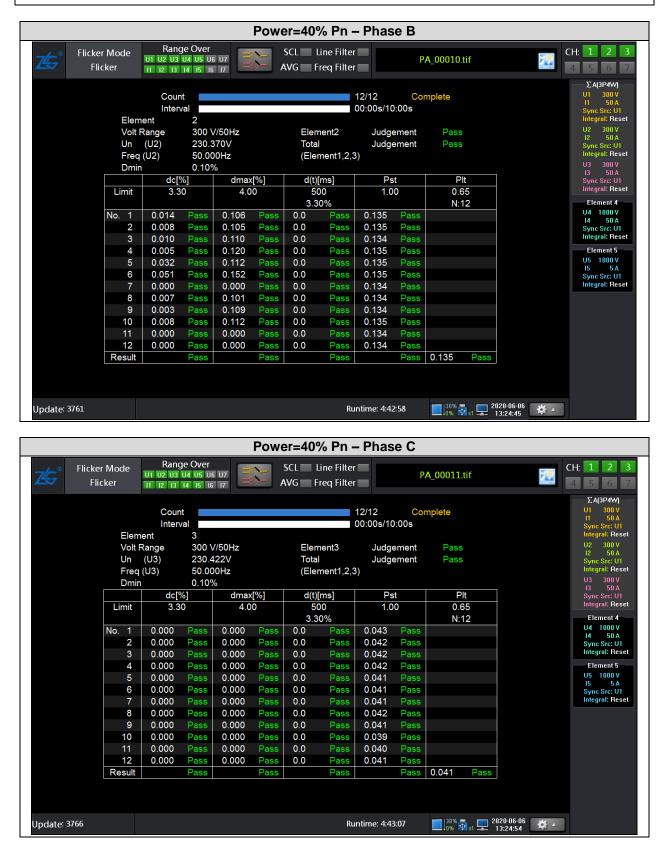
As it can be seen in the next screenshots, this test has 12 steps. The values took of Pst and Plt are the most unfavorable of the 12 steps.

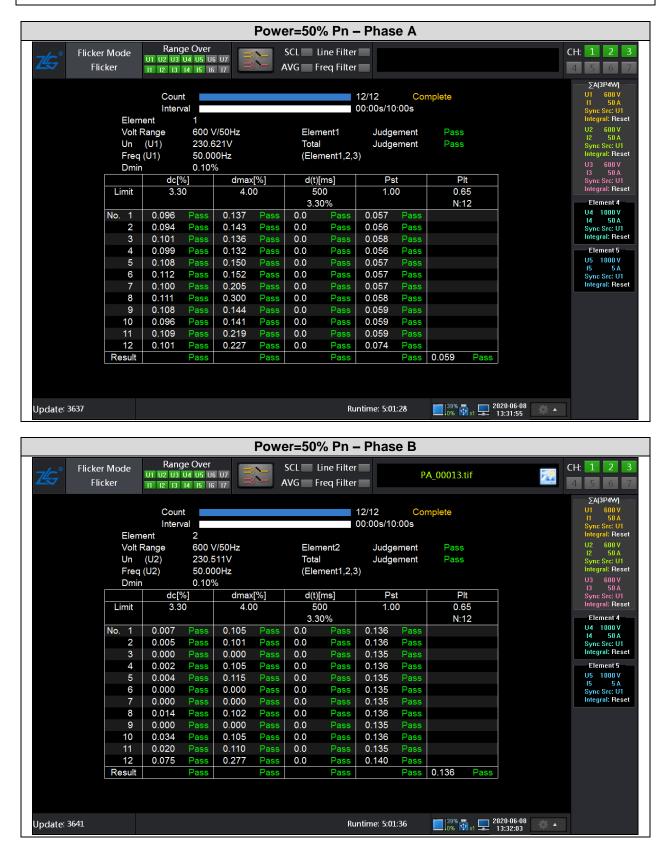


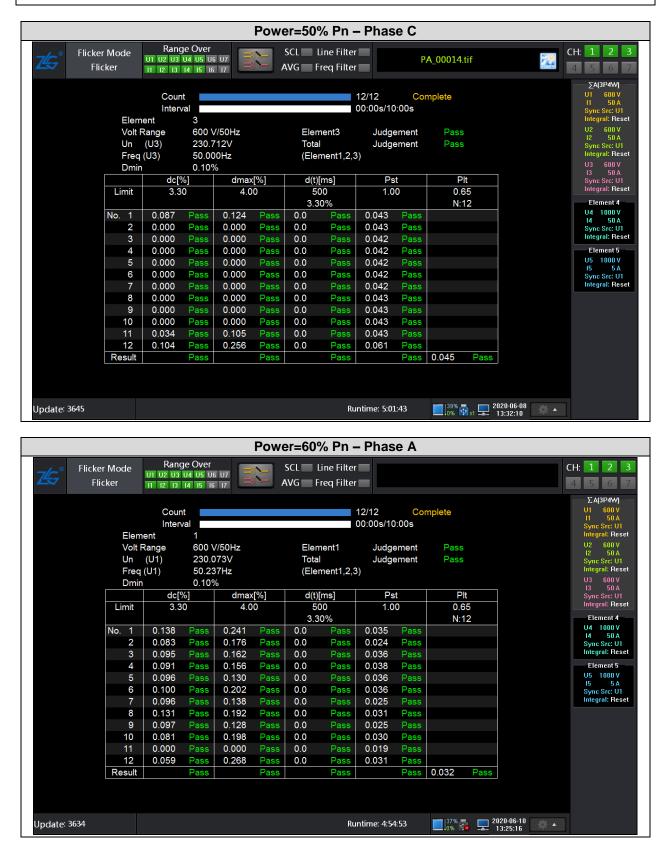
Z£Ģ ° ^F	licker Mode Flicker	Rang 01 02 03 11 12 13					Line Filter Freq Filter		Р	A_00001 .1	tif		CH: 1 2 3 4 5 6 7
	Elem	Coun Interv						12/12 00:00s/10		mplete			Σ A[3P4W] U1 600 V I1 50 A Sync Src: U1 Integral: Reset
		Range		//50Hz		Fler	nent2	Judae	ement	Pass			U2 600 V
		(U2)	230.1			Tota			ement	Pass			I2 50 A Sync Src: U1
	Freq		50.00				ment1,2,3	•	Sinon	1 400			Integral: Reset
	Dmin		0.10%			(2.0		,					U3 600 V
		dc[%		dmax	[%]	d(t)	[ms]	Ps	t	PI	t		13 50 A Sync Src: U1
	Limit	3.3		4.0			00	1.0	0	0.6	5		Integral: Reset
						3.3	0%			N:1	2		Element 4
	No. 1	0.004	Pass	0.111	Pass	0.0	Pass	0.142	Pass				U4 1000 V 14 50 A
	2	0.003	Pass	0.119	Pass	0.0	Pass	0.141	Pass				Sync Src: U1
	3	0.011	Pass	0.101	Pass	0.0	Pass	0.140	Pass				Integral: Reset
	4	0.012	Pass	0.111	Pass	0.0	Pass	0.140	Pass				Element 5
	5	0.000	Pass	0.000	Pass	0.0	Pass	0.140	Pass				U5 1000 V I5 5 A
	6	0.000	Pass	0.000	Pass	0.0	Pass	0.140	Pass				Sync Src: U1
	7	0.000	Pass	0.000	Pass	0.0	Pass	0.139	Pass				Integral: Reset
	8	0.018	Pass	0.158	Pass	0.0	Pass	0.140	Pass				
	9	0.014	Pass	0.123	Pass	0.0	Pass	0.139	Pass				
	10	0.009	Pass	0.107	Pass	0.0	Pass	0.140	Pass				
	11	0.006	Pass	0.102	Pass	0.0	Pass	0.139	Pass				
	12	0.009	Pass	0.117	Pass	0.0	Pass	0.140	Pass				
	Result		Pass		Pass		Pass		Pass	0.140	Pass		
Update: 3650)						Ru	ntime: 5:04	k:51	0%	x1 💻 20	020-06-03 13:31:03	J

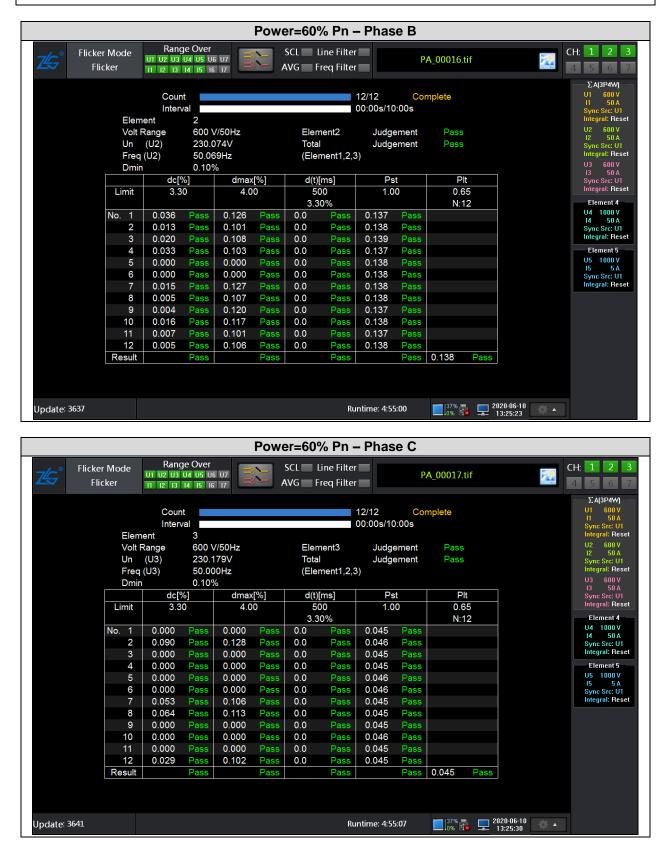


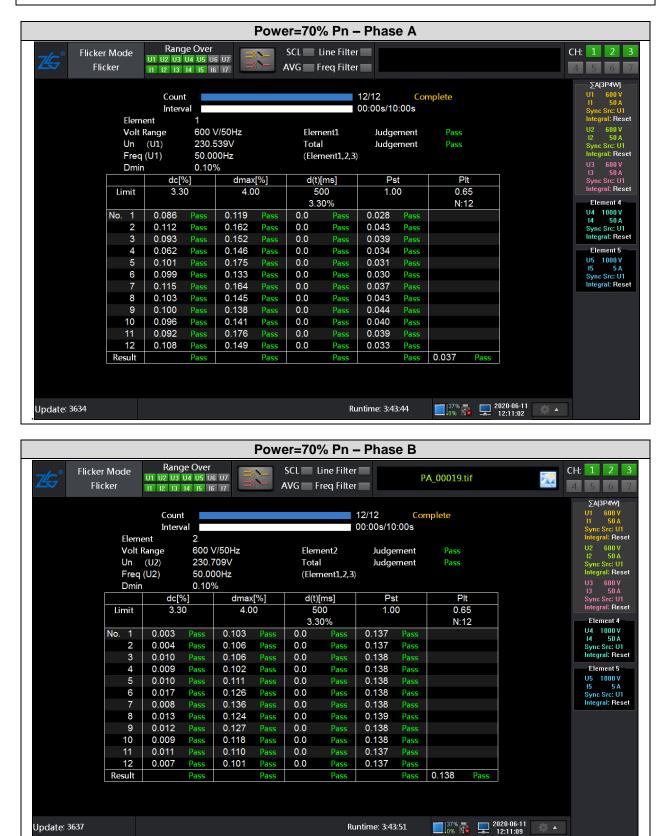
					Powe	er=20	% Pn -	- Phas	e C				
Z€⊊°	Flicker Mode Flicker	Rang 01 02 03 11 12 13					Line Filter Freq Filter		Р	A_00005.tif			CH: 1 2 3 4 5 6 7
	Elem	Coun Interv						12/12 00:00s/10		mplete			Σ A(3P4W) U1 600 V I1 50 A Sync Src: U1 Integral: Reset
		Range		//50Hz		Eler	nent3	ludar	ement	Pass			U2 600 V
		(U3)	230.2			Tota			ement	Pass			12 50 A
	Freq		50.00				" ment1,2,3	•	ement	Fass			Sync Src: U1 Integral: Reset
	Dmin		0.10%			(CIE	menti,z,c)					U3 600 V
		dc[%		o dmax	r0/1	d(t)	[ms]	Ps	+	Plt			13 50 A Sync Src: U1
	Limit	3.3		4.0			00	 1.0		0.65			Integral: Reset
	Ennix	0.0	0	4.0	0	_	s0%	1.0	0	N:12			Element 4
	No. 1	0.000	Pass	0.000	Pass	0.0	Pass	0.048	Pass				U4 1000 V
	2	0.000	Pass	0.000	Pass	0.0	Pass	0.047	Pass				I4 50 A Sync Src: U1
	3	0.013	Pass	0.101	Pass	0.0	Pass	0.046	Pass				Integral: Reset
	4	0.009	Pass	0.101	Pass	0.0	Pass	0.045	Pass				Element 5
	5	0.000	Pass	0.000	Pass	0.0	Pass	0.046	Pass				U5 1000 V
	6	0.000	Pass	0.000	Pass	0.0	Pass	0.046	Pass				15 5 A Sync Src: U1
	7	0.000	Pass	0.000	Pass	0.0	Pass	0.046	Pass				Integral: Reset
	8	0.000	Pass	0.000	Pass	0.0	Pass	0.046	Pass				
	9	0.000	Pass	0.000	Pass	0.0	Pass	0.046	Pass				
	10	0.020	Pass	0.108	Pass	0.0	Pass	0.046	Pass				
	11	0.000	Pass	0.000	Pass	0.0	Pass	0.047	Pass				
	12	0.000	Pass	0.000	Pass	0.0	Pass	0.047	Pass				
	Result		Pass		Pass		Pass		Pass	0.046	Pass		
Update: 3	8726						Ru	ntime: 7:40):07	51% 1 ,0%		-06-03 06:20	▲

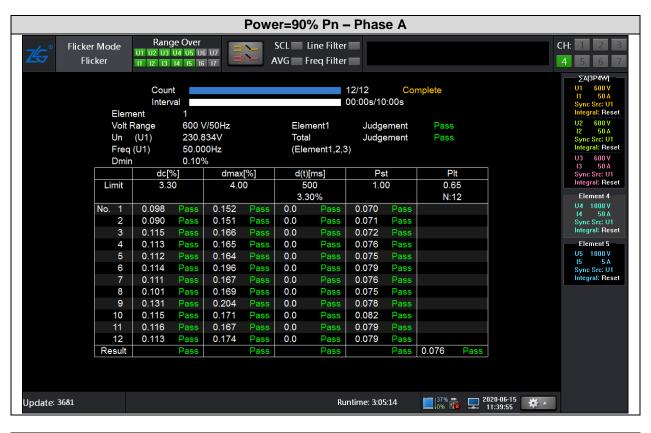


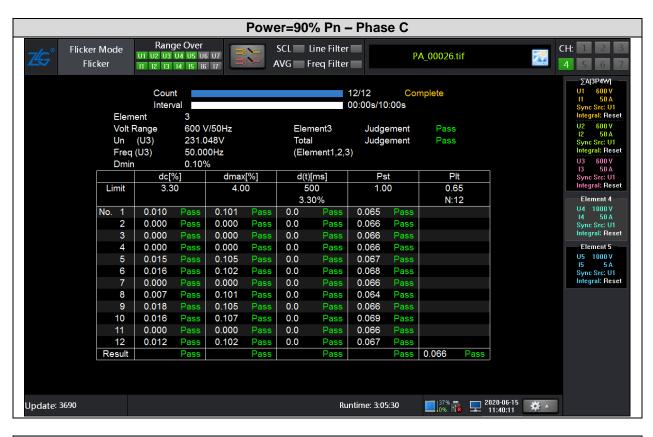









			Pow	er=80% Pn	– Phase A		
Z ko [°]	Flicker Mode Flicker	Range Ove U1 U2 U3 U4 U5 I1 I2 I3 I4 I5	UG U7 📑 🦰	SCL Line Filte			CH: 1 2 3 4 5 6 7
	Eleme		N//5011-		00:00s/10:00s	nplete	∑A(3P4W) U1 600 V I1 50 A Sync Src: U1 Integral: Reset U2 600 V
		5) V/50Hz).630V	Element1	Judgement	Pass	12 50 A
	Un Freq		0.630V 000Hz	Total (Element1,2,3	Judgement	Pass	Sync Src: U1 Integral: Reset
	Dmin			(Element1,2,3)		U3 600 V
	Dillin	dc[%]	dmax[%]	d(t)[ms]	Pst	Plt	13 50 A Svnc Src: U1
	Limit	3.30	4.00	500	1.00	0.65	Integral: Reset
	Linit	0.00		3.30%	1.00	N:12	Element 4
	No. 1	0.103 Pass	0.149 Pass	0.0 Pass	0.046 Pass		U4 1000 V 14 50 A
	2	0.106 Pass	0.147 Pass	0.0 Pass	0.045 Pass		I4 50 A Sync Src: U1
	3	0.109 Pass	0.157 Pass	0.0 Pass	0.038 Pass		Integral: Reset
	4	0.065 Pass	0.146 Pass	0.0 Pass	0.040 Pass		Element 5
	5	0.094 Pass	0.153 Pass	0.0 Pass	0.045 Pass		U5 1000 V I5 5 A
	6	0.104 Pass	0.151 Pass	0.0 Pass	0.048 Pass		Sync Src: U1
	7	0.106 Pass	0.147 Pass	0.0 Pass	0.042 Pass		Integral: Reset
	8	0.060 Pass	0.110 Pass	0.0 Pass	0.034 Pass		
	9	0.074 Pass	0.128 Pass	0.0 Pass	0.027 Pass		
	10	0.098 Pass	0.151 Pass	0.0 Pass	0.037 Pass		
	11	0.118 Pass	0.150 Pass	0.0 Pass	0.041 Pass		
	12	0.088 Pass	0.141 Pass	0.0 Pass	0.036 Pass	0.044	
	Result	Pass	Pass	Pass	Pass	0.041 Pass	
Update: 732	27			Ri	untime: 5:46:51	☐. ^{37%} ∰ _{x1} 🖵 2020-06-11 14:14:09	


					Powe	er=80°	% Pn -	- Phas	e C				
ZG°	Flicker Mode Flicker	Range 01 02 03 0 11 12 13 1				Line Filter Freq Filter		F	PA_00023.t	iif		CH: 1 2 3 4 5 6 7	
	Eleme	Count Interva	al					12/12 00:00s/10		mplete			∑A(3P4₩) U1 600 V I1 50 A Sync Src: U1 Integral: Reset
	Volt F	Range	600 \	//50Hz		Elem	nent3	Judge	ement	Pass			U2 600 V
	Un	(U3)	230.8	841V		Tota	1	Judge		Pass			12 50 A Sync Src: U1
	Freq	(U3)	50.00	0Hz		(Eler	nent1,2,3)						Integral: Reset
	Dmin		0.10%	6									U3 600 V
		dc[%		dmax	[%]	d(t)	[ms]	Ps	t	Pl	t]	13 50 A Sync Src: U1
	Limit	3.30)	4.0	0		00	1.0	0	0.6	5		Integral: Reset
							3.30%				N:12		Element 4
	No. 1	0.000	Pass	0.000	Pass	0.0	Pass	0.052	Pass				U4 1000 V 14 50 A
	2	0.000	Pass	0.000	Pass	0.0	Pass	0.053	Pass				Sync Src: U1
	3	0.000	Pass	0.000	Pass	0.0	Pass	0.054	Pass				Integral: Reset
	4	0.000	Pass	0.000	Pass	0.0	Pass	0.055	Pass				Element 5
	5	0.000	Pass	0.000	Pass	0.0	Pass	0.054	Pass				U5 1000 V 15 5 A
	6	0.013	Pass	0.104	Pass	0.0	Pass	0.055	Pass				Sync Src: U1
	7	0.000	Pass	0.000	Pass	0.0	Pass	0.054	Pass				Integral: Reset
	8	0.000	Pass	0.000	Pass	0.0	Pass	0.052	Pass				
	9	0.000	Pass	0.000	Pass	0.0	Pass	0.051	Pass				
	10	0.000	Pass	0.000	Pass	0.0	Pass	0.049	Pass				
	11	0.000	Pass	0.000	Pass	0.0	Pass	0.049	Pass				
	12	0.000	Pass	0.000	Pass	0.0	Pass	0.048	Pass	0.050	_		
	Result		Pass		Pass		Pass		Pass	0.052	Pass	J	
Update: 73	334						Ru	intime: 5:47	7:04	□ 0%	x1 💻 2	020-06-11 14:14:23	



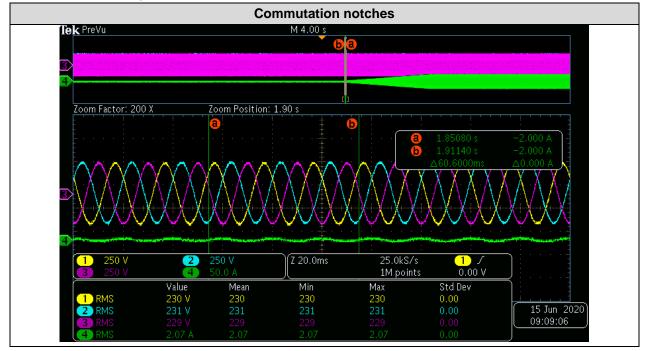
					Powe	r=100	% Pn	– Pha	se A			
Z€5°	Flicker Mode Flicker	Ran <u>c</u> U1 U2 U3 I1 I2 I3					ine Filter req Filter					CH: 1 2 3 4 5 6 7
	Elem	Coun Intervent						12/12 00:00s/10		nplete		∑A(3P4W) U1 600 V I1 50 A Sync Src: U1 Integral: Reset
	Volt F	Range	600 \	//50Hz		Elen	nent1	Judge	ement	Pass		U2 600 V 12 50 A
	Un	(U1)	230.6	674V		Tota	l	Judge	ement	Pass		Sync Src: U1
	Freq	(U1)	50.00	0Hz		(Ele	ment1,2,3	5)				Integral: Reset
	Dmin		0.10%	6								U3 600 V 13 50 A
		dc[º	%]	dma>			[ms]	Ps		Plt		Sync Src: U1
	Limit	3.3	0	4.0	0		00	1.00		0.65		Integral: Reset
						3.30%				N:12		Element 4
	No. 1	0.110	Pass	0.187	Pass	0.0	Pass	0.075	Pass			U4 1000 V 14 50 A
	2	0.110	Pass	0.185	Pass	0.0	Pass	0.076	Pass			Sync Src: U1
	3	0.107	Pass	0.180	Pass	0.0	Pass	0.078	Pass			Integral: Reset
	4	0.108	Pass	0.170	Pass	0.0	Pass	0.078	Pass			Element 5 U5 1000 V
	5	0.101	Pass	0.165	Pass	0.0	Pass	0.070	Pass			15 5 A
	6	0.104	Pass	0.166	Pass	0.0	Pass	0.064	Pass			Sync Src: U1 Integral: Reset
	7	0.104	Pass	0.162	Pass	0.0	Pass	0.065	Pass			integral. Reset
	8	0.101 0.127	Pass Pass	0.203 0.186	Pass Pass	0.0 0.0	Pass Pass	0.059 0.059	Pass Pass			
	9 10	0.127	Pass	0.166	Pass	0.0	Pass	0.059	Pass			
	10	0.115	Pass	0.188	Pass	0.0	Pass	0.058	Pass			
	12	0.115	Pass	0.162	Pass	0.0	Pass	0.060	Pass			
	Result	0.107	Pass	0.100	Pass	0.0	Pass	0.000	Pass	0.068 Pa	ISS	
	rtesuit		-005				1000		-455	0.000		
Update: 756	69						Ru	ntime: 5:14	1:48	1 37% 1 0%	2020-06-15 13:49:29	

					Powe	r=100	% P n	– Pha	se C					
Z ¢	Flicker Mode Flicker	Rang 01 02 03 11 12 13		SCL Line Filter AVG Freq Filter				A_00029.t	if		2 8 60	CH: 1 2 3 4 5 6 7		
	Elem	Count Interv ent						12/12 00:00s/10		mplete				∑A(3P4₩) U1 600 V I1 50 A Sync Src: U1 Integral: Reset
	Volt F	Range	600 \	//50Hz		Eler	nent3	Judge	ement	Pass				U2 600 V 12 50 A
	Un	(U3)	231.0	12V		Tota		Judge	ement	Pass				Sync Src: U1
	Freq	(U3)	50.00	0Hz		(Ele	ment1,2,3	5)						Integral: Reset
	Dmin		0.10%	6										U3 600 V I3 50 A
		dc[%	6]	dmax	[%]	d(t)	[ms]	Ps	it	Plt				Sync Src: U1
	Limit	3.30)	4.0	0	5	00	1.0	0	0.65				Integral: Reset
					3.30%					N:12				Element 4
	No. 1	0.000	Pass	0.000	Pass	0.0	Pass	0.064	Pass					U4 1000 V 14 50 A
	2	0.018	Pass	0.105	Pass	0.0	Pass	0.065	Pass					Sync Src: U1
	3	0.000	Pass	0.000	Pass	0.0	Pass	0.066	Pass					Integral: Reset
	4	0.028	Pass	0.103	Pass	0.0	Pass	0.067	Pass					Element 5
	5	0.000	Pass	0.000	Pass	0.0	Pass	0.061	Pass					U5 1000 V 15 5 A
	6	0.012	Pass	0.101	Pass	0.0	Pass	0.054	Pass					Sync Src: U1
	7	0.009	Pass	0.104	Pass	0.0	Pass	0.057	Pass					Integral: Reset
	8	0.014	Pass	0.101	Pass	0.0	Pass	0.052	Pass					
	9	0.000	Pass	0.000	Pass	0.0	Pass	0.051	Pass					
	10	0.000	Pass	0.000	Pass	0.0	Pass	0.050	Pass					
	11	0.020	Pass	0.105	Pass	0.0	Pass	0.052	Pass					
	12	0.000	Pass	0.000	Pass	0.0	Pass	0.058	Pass					
	Result		Pass		Pass		Pass		Pass	0.059	Pass			
Update: 75	575						Ru	ntime: 5:1!	5:00	37% -) 💻 ²⁰)20-06-15 3:49:42	\$ ▲	

4. Voltage unbalance

This point refers to the paragraph 4.1.6 of this standard. In this case, it is not applicable due to the inverter being a three-phase inverter.

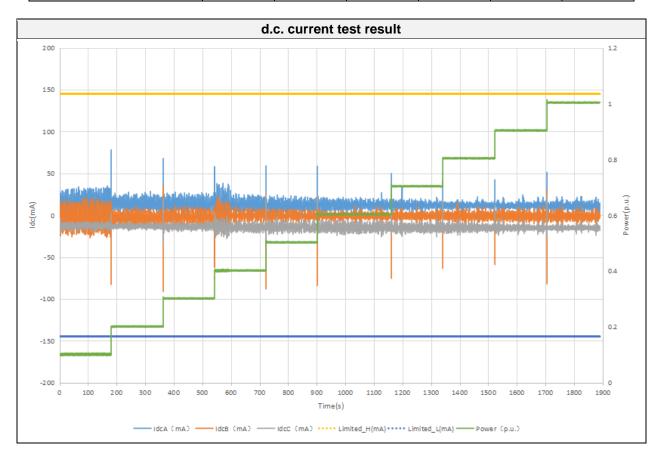
The voltage unbalance test result as following:


Phase A Measured (V)	Phase B Measured (V)	Phase C Measured (V)	Output Power (kW)
230.9	230.9	231.1	20.0
▲ (A-B)	▲(B-C)	▲(C-A)	Limit
0.016%	0.008%	0.024%	0.050%
	nge Over 13 U4 U5 U6 U7 3 I4 I5 I6 I7	Filter	CH: 1 2 3 4 5 6 7
$\begin{array}{llllllllllllllllllllllllllllllllllll$		11(1) P1(1) S1(1) Q1(1) Q1(1) \$	230.8974∨ 28.8725A 6.66660k∨ 88.9987∨ar 0.7649° 4.635° 2000 V 1 ▲ 50 A Sync Src: U1 Integral: Reset U2 ▲ 300 ∨ 12 50 A Sync Src: U1 Integral: Reset U3 ▲ 300 ∨ 13 50 A Sync Src: U1 Integral: Reset U3 ▲ 300 ∨ 13 50 A Sync Src: U1 Integral: Reset Element 4 U4 50 A Sync Src: U1 Integral: Reset Element 5 U5 1000 ∨ 15 5 A Sync Src: U1
U3(1) 231.0530V I3(1) 28.9305A P3(1) 6.6835kW S3(1) 6.6845kVA Q3(1) 113.9998var X3(1) \$\approx (1) 0.9772° \$\approx 3 1.4686°		2(1) P2(1) S2(1) Q2(1) A2(1) 42(1) 42(1)	230.8656V 29.0136A 6.6976kW 6.6982kVA 93.0735var 0.7962° .3372°
	te: 200ms	Runtime: 5:47:12	2020-06-06

5. Commutation notches

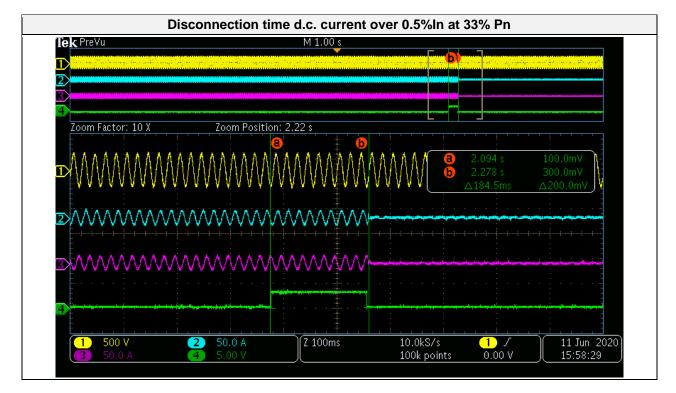
The commutation notches test has been measured according to Clause 4.1.7 of the standard.

By the next picture it is obtained that the process of commutation for this inverter start up from 0%Pn to 100%Pn. The relative depth of commutation is 0.1%.

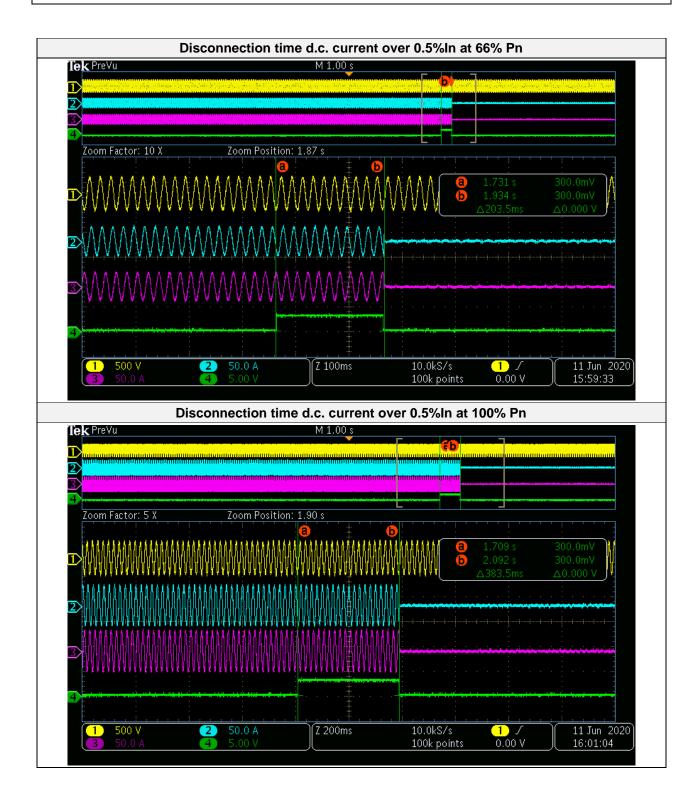


6. DC injection

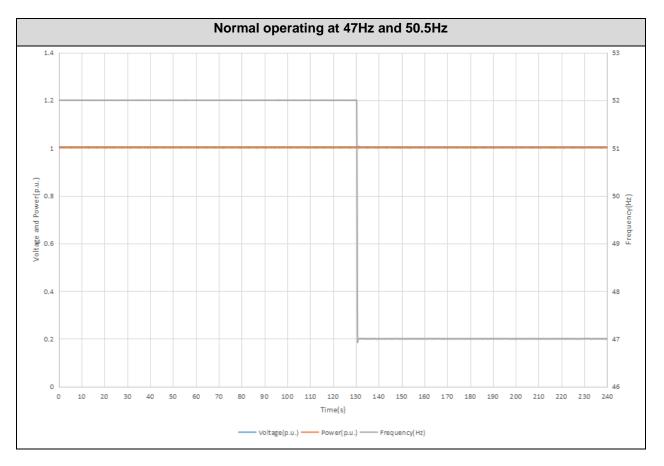
DC injection test has been measured according to Clause 4.1.8 and Clause 4.2.2.5 of the standard.


The embedded generator shall not inject d.c. current greater than 0.5 % of the rated a.c. output current into the utility interface under any operating condition, measured over a 1-minute interval. The EG shall cease to energize the utility network within 500 ms if this threshold is exceeded. Since the rated a.c. output current is 116A, so the limit is 580mA.

	Measured d.c. current													
Power Bin		10%Pn	20%Pn	30%Pn	40%Pn	50%Pn								
	Phase A	33	26	26	36	24								
d.c. current measured result (mA)	Phase B	25	15	14	21	21								
	Phase C	22	18	20	26	28								
Power Bin		60%Pn	70%Pn	80%Pn	90%Pn	100%Pn								
	Phase A	26	32	21	23	22								
d.c. current measured result (mA)	Phase B	11	19	14	15	24								
	Phase C	25	25	23	24	23								



Measured protection time when d.c. current over 0.5%In												
Power Bin	33%Pn	66%Pn	100%Pn	Limited								
Disconnection time(ms)	184.5	203.5	383.5	500								


7. Normal frequency operating range

Normal frequency operating range tests have been measured according to Clause 4.1.9 of the standard. While the utility frequency is in the range of 47 Hz and 50.5 Hz, the system shall operate normally.

Frequency limits (Hz)	Frequency measured (Hz)	Disconnection
52.00	52.00	No
47.00 (*)	47.00	No

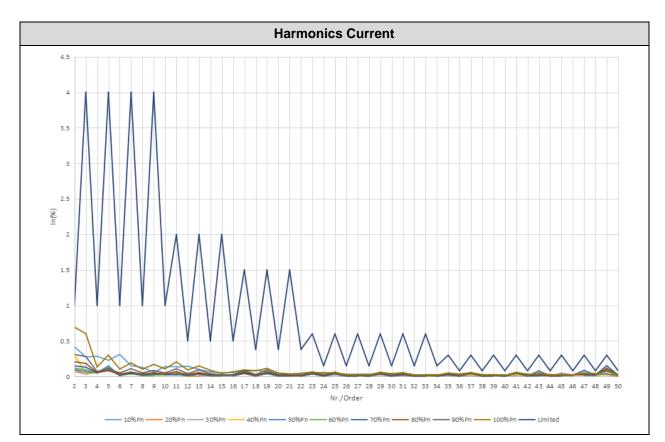
Note: The test was performed together with normal voltage operating range, the unit can not reach the maximum power due to current limitation.

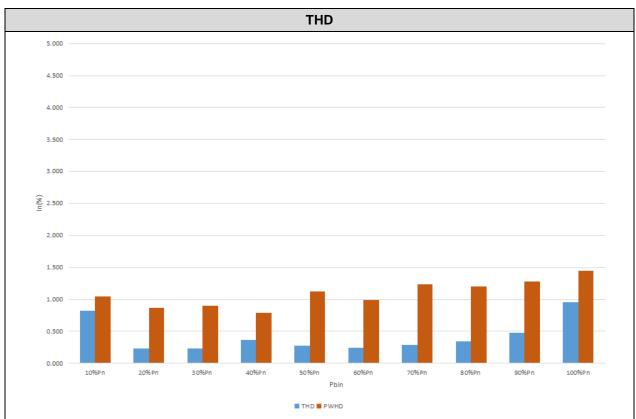
The results are offered in the table below:

8. Harmonic and waveform distortion

Harmonic and waveform distortion tests have been measured according to Clause 4.1.10 of the standard. The values measured for current harmonics is respectively offered in the following points.

					ha	rmonic						
Pn(%)	10	20	30	40	50	60	70	80	90	100	Max	LIMIT
Nr. /Order	I _h (%)	(%)	(%)									
2	0.045	0.050	0.063	0.076	0.088	0.106	0.109	0.109	0.106	0.117	0.117	1.000
3	0.045	0.039	0.043	0.048	0.057	0.076	0.090	0.103	0.122	0.128	0.128	4.000
4	0.045	0.052	0.055	0.057	0.072	0.078	0.078	0.077	0.077	0.084	0.084	1.000
5	0.252	0.162	0.358	0.365	0.438	0.625	0.751	0.818	0.884	0.919	0.919	4.000
6	0.027	0.028	0.028	0.030	0.032	0.035	0.036	0.034	0.033	0.034	0.036	1.000
7	0.258	0.121	0.104	0.269	0.257	0.236	0.309	0.420	0.534	0.640	0.640	4.000
8	0.033	0.024	0.027	0.024	0.026	0.029	0.031	0.028	0.029	0.027	0.033	1.000
9	0.023	0.024	0.024	0.022	0.025	0.027	0.026	0.025	0.026	0.031	0.031	4.000
10	0.021	0.021	0.021	0.033	0.025	0.025	0.025	0.023	0.022	0.026	0.033	1.000
11	0.142	0.211	0.037	0.256	0.164	0.202	0.178	0.123	0.141	0.224	0.256	2.000
12	0.023	0.022	0.023	0.026	0.026	0.027	0.028	0.028	0.029	0.027	0.029	0.500
13	0.053	0.033	0.225	0.222	0.183	0.072	0.234	0.287	0.283	0.258	0.287	2.000
14	0.021	0.022	0.025	0.028	0.033	0.034	0.028	0.025	0.024	0.026	0.034	0.500
15	0.023	0.021	0.022	0.025	0.025	0.026	0.023	0.024	0.029	0.035	0.035	2.000
16	0.022	0.025	0.025	0.022	0.026	0.022	0.028	0.035	0.031	0.028	0.035	0.500
17	0.122	0.043	0.067	0.241	0.330	0.437	0.211	0.133	0.275	0.366	0.437	1.500
18	0.020	0.021	0.021	0.024	0.024	0.031	0.028	0.027	0.025	0.026	0.031	0.380
19	0.094	0.067	0.061	0.135	0.124	0.439	0.419	0.228	0.117	0.270	0.439	1.500
20	0.022	0.023	0.028	0.029	0.026	0.037	0.028	0.023	0.027	0.029	0.037	0.380
21 22	0.020	0.020	0.022	0.022	0.022	0.033	0.046	0.050	0.038	0.035	0.050 0.048	1.500 0.380
22	0.019	0.020	0.022	0.023	0.022	0.045	0.033	0.023	0.035	0.048	0.048	0.600
23	0.029	0.044	0.047	0.077	0.119	0.039	0.324	0.418	0.329 0.032	0.148	0.418	0.000
25	0.019	0.020	0.021	0.021	0.022	0.024	0.033	0.029	0.032	0.364	0.364	0.600
26	0.021	0.032	0.020	0.023	0.029	0.024	0.073	0.235	0.035	0.034	0.036	0.150
27	0.021	0.021	0.020	0.023	0.023	0.024	0.027	0.030	0.032	0.043	0.043	0.600
28	0.019	0.021	0.020	0.021	0.021	0.021	0.020	0.020	0.033	0.028	0.036	0.150
29	0.058	0.045	0.036	0.034	0.065	0.055	0.118	0.042	0.007	0.188	0.188	0.600
30	0.019	0.019	0.019	0.019	0.019	0.020	0.021	0.021	0.022	0.022	0.022	0.150
31	0.041	0.038	0.026	0.029	0.043	0.050	0.055	0.085	0.080	0.039	0.085	0.600
32	0.019	0.019	0.019	0.020	0.021	0.020	0.020	0.020	0.021	0.025	0.025	0.150
33	0.019	0.019	0.019	0.019	0.019	0.020	0.019	0.020	0.021	0.020	0.021	0.600
34	0.019	0.019	0.019	0.019	0.020	0.021	0.019	0.020	0.019	0.020	0.021	0.150
35	0.021	0.032	0.027	0.023	0.033	0.032	0.037	0.041	0.047	0.045	0.047	0.300
36	0.019	0.019	0.019	0.019	0.019	0.020	0.020	0.019	0.019	0.019	0.020	0.080
37	0.027	0.029	0.026	0.022	0.027	0.030	0.038	0.035	0.039	0.047	0.047	0.300
38	0.019	0.020	0.019	0.020	0.019	0.021	0.021	0.020	0.020	0.021	0.021	0.080
39	0.019	0.020	0.019	0.020	0.019	0.020	0.020	0.019	0.018	0.020	0.020	0.300
40	0.019	0.019	0.020	0.021	0.020	0.020	0.020	0.020	0.020	0.020	0.021	0.080
41	0.030	0.023	0.026	0.020	0.025	0.024	0.026	0.032	0.037	0.035	0.037	0.300
42	0.019	0.019	0.019	0.019	0.019	0.019	0.020	0.020	0.020	0.019	0.020	0.080
43	0.028	0.022	0.026	0.019	0.023	0.022	0.026	0.025	0.027	0.029	0.029	0.300
44	0.020	0.019	0.019	0.019	0.019	0.020	0.020	0.019	0.021	0.020	0.021	0.080


					ha	rmonic						
Pn(%)	10	20	30	40	50	60	70	80	90	100	Мах	LIMIT
Nr. /Order	I _h (%)	(%)	(%)									
45	0.019	0.019	0.019	0.020	0.019	0.020	0.019	0.020	0.020	0.020	0.020	0.300
46	0.019	0.020	0.020	0.019	0.019	0.019	0.019	0.019	0.019	0.020	0.020	0.080
47	0.019	0.022	0.028	0.020	0.020	0.020	0.021	0.021	0.023	0.025	0.028	0.300
48	0.019	0.019	0.019	0.019	0.019	0.019	0.020	0.020	0.020	0.019	0.020	0.080
49	0.020	0.024	0.024	0.020	0.024	0.025	0.027	0.028	0.028	0.030	0.030	0.300
50	0.019	0.020	0.021	0.020	0.019	0.020	0.020	0.020	0.020	0.020	0.021	0.080
THD(%)	0.456	0.350	0.484	0.659	0.707	0.972	1.070	1.147	1.252	1.355	1.355	5.000


					Inter-	harmon	ic					
Pn(%)	10	20	30	40	50	60	70	80	90	100	Мах	LIMIT
Nr. /Order	I _h (%)	(%)	(%)									
75	0.097	0.063	0.062	0.062	0.076	0.064	0.065	0.077	0.083	0.085	0.097	0.1
125	0.039	0.031	0.031	0.030	0.056	0.028	0.028	0.031	0.032	0.032	0.056	0.1
175	0.036	0.032	0.033	0.031	0.032	0.031	0.030	0.032	0.031	0.031	0.036	0.1
225	0.044	0.035	0.035	0.035	0.035	0.036	0.035	0.039	0.039	0.038	0.044	0.1
275	0.039	0.034	0.036	0.036	0.035	0.038	0.036	0.040	0.040	0.040	0.040	0.1
325	0.042	0.029	0.030	0.028	0.034	0.030	0.032	0.037	0.035	0.035	0.042	0.1
375	0.039	0.026	0.025	0.024	0.029	0.028	0.030	0.034	0.034	0.035	0.039	0.1
425	0.023	0.022	0.021	0.021	0.026	0.024	0.026	0.030	0.031	0.032	0.032	0.1
475	0.020	0.018	0.017	0.018	0.021	0.021	0.023	0.027	0.028	0.029	0.029	0.1
525	0.032	0.017	0.016	0.017	0.019	0.019	0.021	0.025	0.026	0.029	0.032	0.1
575	0.033	0.014	0.014	0.016	0.018	0.019	0.020	0.023	0.025	0.027	0.033	0.25
625	0.032	0.013	0.013	0.014	0.017	0.015	0.017	0.020	0.021	0.024	0.032	0.25
675	0.030	0.012	0.013	0.013	0.014	0.015	0.017	0.019	0.021	0.024	0.030	0.25
725	0.015	0.011	0.011	0.012	0.014	0.014	0.015	0.017	0.018	0.021	0.021	0.25
775	0.014	0.011	0.010	0.011	0.013	0.013	0.014	0.016	0.018	0.020	0.020	0.25
825	0.025	0.011	0.010	0.011	0.012	0.013	0.014	0.016	0.017	0.020	0.025	0.25
875	0.021	0.010	0.009	0.010	0.012	0.013	0.014	0.015	0.017	0.020	0.021	0.19
925	0.021	0.010	0.009	0.010	0.012	0.011	0.013	0.014	0.015	0.018	0.021	0.19
975	0.019	0.009	0.009	0.010	0.011	0.011	0.013	0.014	0.015	0.018	0.019	0.19
1025	0.011	0.008	0.009	0.009	0.010	0.011	0.012	0.013	0.014	0.017	0.017	0.19
1075	0.011	0.008	0.008	0.009	0.010	0.010	0.012	0.012	0.014	0.016	0.016	0.19
1125	0.016	0.008	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.017	0.017	0.19
1175	0.014	0.008	0.008	0.008	0.010	0.010	0.012	0.012	0.013	0.016	0.016	0.08
1225	0.016	0.008	0.007	0.009	0.010	0.010	0.011	0.012	0.013	0.015	0.016	0.08
1275	0.014	0.008	0.008	0.008	0.009	0.010	0.011	0.012	0.013	0.016	0.016	0.08
1325	0.009	0.008	0.008	0.009	0.010	0.010	0.011	0.012	0.013	0.015	0.015	0.08
1375	0.009	0.007	0.007	0.008	0.009	0.009	0.011	0.011	0.012	0.014	0.014	0.08
1425	0.013	0.008	0.008	0.008	0.010	0.010	0.011	0.012	0.013	0.015	0.015	0.08
1475	0.010	0.007	0.007	0.008	0.009	0.009	0.011	0.011	0.012	0.014	0.014	0.08
1525	0.012	0.007	0.007	0.008	0.009	0.009	0.011	0.011	0.012	0.014	0.014	0.08
1575	0.011	0.007	0.007	0.008	0.009	0.010	0.011	0.011	0.013	0.015	0.015	0.08
1625	0.009	0.007	0.007	0.008	0.009	0.009	0.010	0.011	0.012	0.013	0.013	0.08
1675	0.009	0.007	0.007	0.008	0.008	0.009	0.010	0.011	0.012	0.014	0.014	0.08
1725	0.009	0.007	0.007	0.008	0.009	0.010	0.011	0.011	0.012	0.014	0.014	0.08
1775	0.010	0.008	0.008	0.008	0.008	0.009	0.010	0.011	0.012	0.014	0.014	0.03
1825	0.009	0.008	0.007	0.008	0.008	0.010	0.010	0.011	0.012	0.014	0.014	0.03
1875	0.009	0.008	0.007	0.008	0.009	0.010	0.011	0.011	0.012	0.014	0.014	0.03

					Inter-	harmon	ic					
Pn(%)	10	20	30	40	50	60	70	80	90	100	Max	LIMIT
Nr. /Order	I _h (%)	(%)	(%)									
1925	0.009	0.008	0.008	0.008	0.009	0.010	0.011	0.011	0.012	0.013	0.013	0.03
1975	0.009	0.008	0.008	0.008	0.009	0.010	0.010	0.011	0.012	0.014	0.014	0.03
2025	0.010	0.008	0.008	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.014	0.03
2075	0.010	0.008	0.008	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.014	0.03
2125	0.010	0.009	0.008	0.009	0.009	0.010	0.011	0.012	0.013	0.014	0.014	0.03
2175	0.010	0.009	0.009	0.009	0.009	0.010	0.011	0.012	0.013	0.015	0.015	0.03
2225	0.010	0.009	0.009	0.009	0.009	0.010	0.011	0.012	0.013	0.014	0.014	0.03
2275	0.010	0.010	0.010	0.010	0.010	0.011	0.012	0.013	0.014	0.015	0.015	0.03
2325	0.014	0.012	0.012	0.012	0.011	0.013	0.013	0.015	0.016	0.017	0.017	0.03
2375	0.012	0.011	0.010	0.011	0.012	0.012	0.013	0.014	0.015	0.016	0.016	0.03
2425	0.015	0.013	0.012	0.013	0.011	0.014	0.014	0.015	0.016	0.017	0.017	0.03
2475	0.013	0.011	0.011	0.011	0.013	0.012	0.013	0.014	0.015	0.016	0.016	0.03
2525	0.012	0.012	0.011	0.012	0.012	0.013	0.013	0.014	0.015	0.016	0.016	0.03
2575	0.013	0.012	0.012	0.012	0.013	0.013	0.014	0.015	0.016	0.017	0.017	0.03
2625	0.015	0.013	0.012	0.013	0.014	0.015	0.015	0.016	0.017	0.018	0.018	0.03
2675	0.017	0.014	0.014	0.015	0.016	0.016	0.016	0.018	0.018	0.019	0.019	0.03
2725	0.017	0.014	0.014	0.015	0.015	0.016	0.016	0.018	0.018	0.019	0.019	0.03
2775	0.018	0.016	0.016	0.017	0.017	0.018	0.018	0.019	0.020	0.021	0.021	0.03
2825	0.016	0.016	0.016	0.017	0.018	0.018	0.019	0.020	0.020	0.021	0.021	0.03
2875	0.017	0.017	0.016	0.018	0.019	0.019	0.020	0.021	0.021	0.022	0.022	0.03
2925	0.019	0.018	0.018	0.020	0.021	0.022	0.022	0.023	0.024	0.025	0.025	0.03
2975	0.019	0.019	0.018	0.020	0.022	0.023	0.023	0.025	0.025	0.026	0.026	0.03

9. Power Factor

Power factor tests have been measured according to Clause 4.1.11 of the standard.

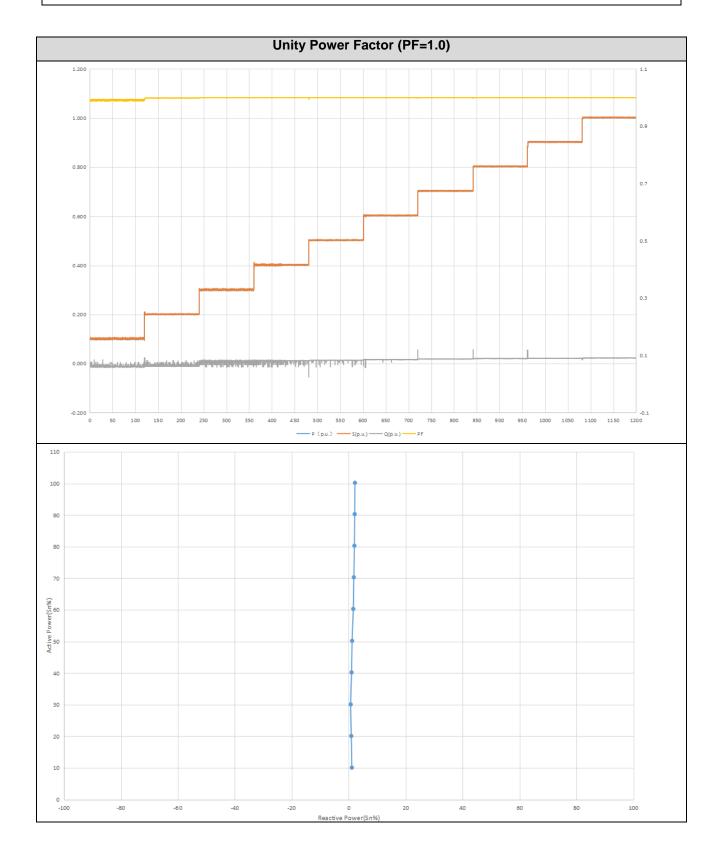
Five different tests have been done:

- Test 1: PF=1
- Test 2: Rectangular Curve Q fixed (Q=±66% Sn)
- Test 3: Triangular Curve PF fixed (PF=±0.8)
- Test 4: Semicircular Curve S fixed (S=100% Sn)
- Test 5: Settable to operate according to a characteristic curve

As the inverter is capable of different power factor settings, the test has been repeated varying the power factor within the range 0.8 leading to 0.8(*) lagging.

(*)0.8 leading to 0.8 lagging is more restrictive than 0.95 as the standard required.

The maximum tolerance allowed for the measured Power Factor is \pm 0.01, for measurements from 20%Sn.



9.1 Test 1: PF=1

The following table and graphs show test results for measurements of power factor set to unity (PF=1):

	Unity Power Factor (PF=1.0)							
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)			
10%	10.1	1.1	1.000	0.993	-0.007			
20%	20.1	0.9	1.000	0.998	-0.002			
30%	30.1	0.7	1.000	0.999	-0.001			
40%	40.2	1.0	1.000	1.000	0.000			
50%	50.2	1.2	1.000	1.000	0.000			
60%	60.3	1.6	1.000	1.000	0.000			
70%	70.3	1.8	1.000	1.000	0.000			
80%	80.3	2.0	1.000	1.000	0.000			
90%	90.3	2.1	1.000	1.000	0.000			
100%	100.2	2.2	1.000	1.000	0.000			

TRF No. NRS 097-2-1(01)

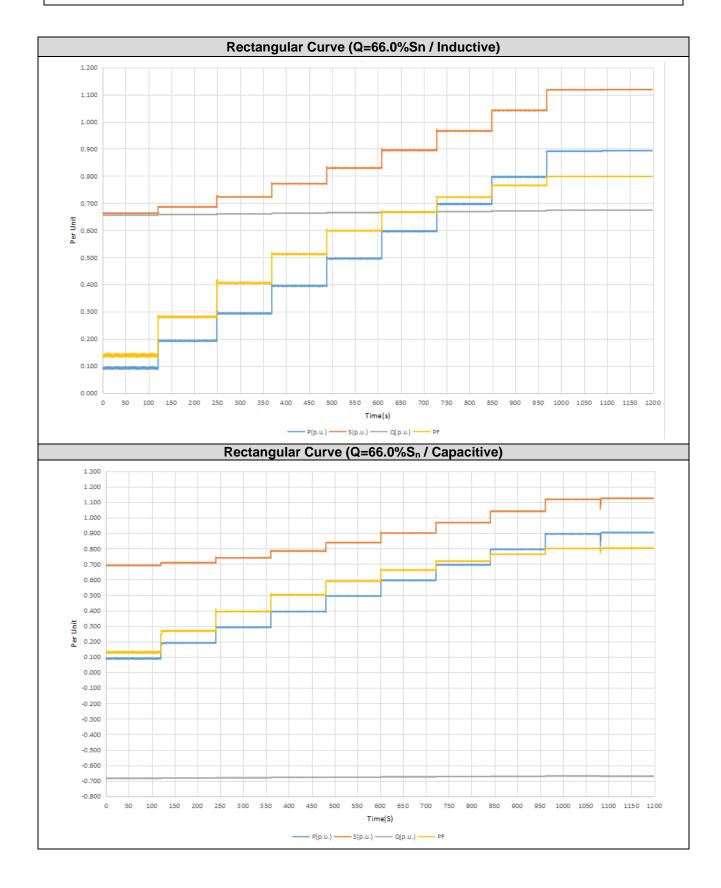
9.2 Test 2: Rectangular Curve (Q =±66%Sn)

This test verifies the capability of the inverter to provide a fixed value of reactive power. In addition, it is verified the Q control mode.

At high active power levels the reactive power provided by the inverter is automatically limited by the inverter in order to protect against over current.

Allowed tolerance to be considered is 5%Sn when possible.

The following table shows the test results:


	Rectangular Curve (Q=66.0%Sn / Inductive)						
P Desired	P measured	Q desired	Q measured	Q Deviation	Power Factor		
(%Sn)	(%Sn)	(%Sn)	(%Sn)	(%Sn)	(cos φ)		
10%	9.2	66.0	65.6	-0.4	0.139		
20%	19.2	66.0	65.8	-0.2	0.281		
30%	29.3	66.0	66.0	0.0	0.406		
40%	39.5	66.0	66.2	+0.2	0.512		
50%	49.5	66.0	66.5	+0.5	0.598		
60%	59.6	66.0	66.7	+0.7	0.666		
70%	69.6	66.0	66.9	+0.9	0.721		
80%	79.6	66.0	67.1	+1.1	0.765		
90%	89.1 (*)	66.0	67.3	+1.3	0.798		
100%	89.2 (*)	66.0	67.4	+1.4	0.798P		

(*) When working in this model, the unit is reactive power priority. The active power is limited due to the current limitation.

	Rectangular Curve (Q=66.0%Sn / Capacitive)						
P Desired	P measured	Q desired	Q measured	Q Deviation	Power Factor		
(%Sn)	(%Sn)	(%Sn)	(%Sn)	(%Sn)	(cos φ)		
10%	8.9	-66.0	-68.4	-2.4	0.129		
20%	19.0	-66.0	-68.3	-2.3	0.268		
30%	29.1	-66.0	-68.1	-2.1	0.393		
40%	39.2	-66.0	-67.9	-1.9	0.500		
50%	49.3	-66.0	-67.7	-1.7	0.589		
60%	59.4	-66.0	-66.1	-0.1	0.661		
70%	69.4	-66.0	-67.3	-1.3	0.718		
80%	79.4	-66.0	-67.2	-1.2	0.764		
90%	89.4 (*)	-66.0	-67.0	-1.0	0.800		
100%	90.3 (*)	-66.0	-67.1	-1.1	0.803		

(*) When working in this model, the unit is reactive power priority. The active power is limited due to the current limitation.

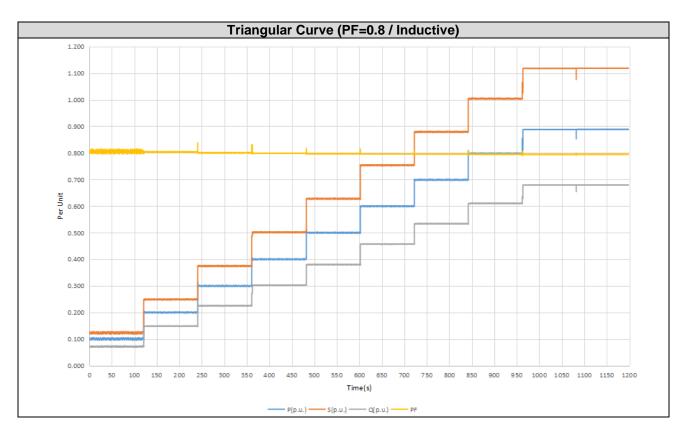
9.3 Test 3: Triangular Curve (PF=±0.8)

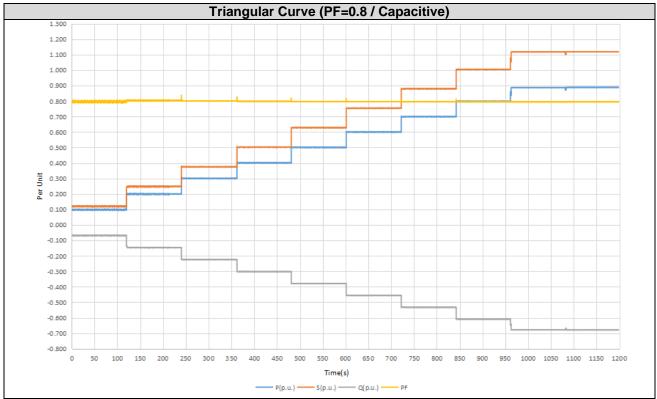
This test verifies the capability of the inverter to provide a fixed value of power factor. In addition it is verified the PF control mode.

At high active power levels the reactive power provided by the inverter is automatically limited by the inverter in order to protect against over current.

The maximum tolerance allowed for the measured Power Factor is ± 0.01 , for measurements from 20%Sn.

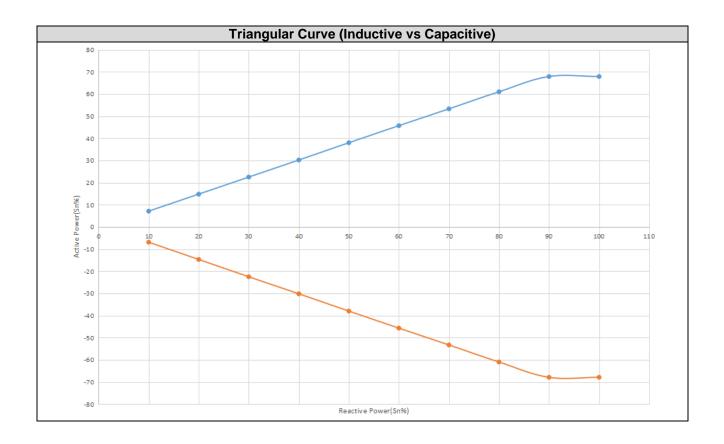
The following table shows the test results:


	Triangular Curve (PF=0.8 / Inductive)						
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)		
10%	10.1	7.1	0.800	0.806	+0.006		
20%	20.0	14.8	0.800	0.803	+0.003		
30%	30.0	22.5	0.800	0.800	0.000		
40%	40.0	30.2	0.800	0.798	-0.002		
50%	50.0	38.0	0.800	0.796	-0.004		
60%	59.9	45.7	0.800	0.795	-0.005		
70%	69.9	53.3	0.800	0.795	-0.005		
80%	79.7	61.0	0.800	0.794	-0.006		
90%	88.7 (*)	67.9	0.800	0.794	-0.006		
100%	88.8 (*)	67.9	0.800	0.794	-0.006		

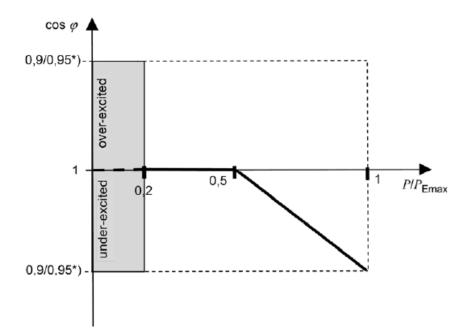

(*) When working in this model, the unit is reactive power priority. The active power is limited due to the current limitation.

	Triangular Curve (PF=0.8 / Capacitive)						
P Desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)		
10%	9.8	-6.9	0.800	0.797	-0.003		
20%	19.9	-14.7	0.800	0.803	+0.003		
30%	30.0	-22.5	0.800	0.800	0.000		
40%	40.0	-30.2	0.800	0.798	-0.002		
50%	50.0	-38.0	0.800	0.796	-0.004		
60%	59.9	-45.7	0.800	0.795	-0.005		
70%	69.8	-53.3	0.800	0.795	-0.005		
80%	79.7	-61.0	0.800	0.794	-0.006		
90%	88.7 (*)	-67.9	0.800	0.794	-0.006		
100%	88.8 (*)	-67.9	0.800	0.794	-0.006		

(*) When working in this model, the unit is reactive power priority. The active power is limited due to the current limitation.



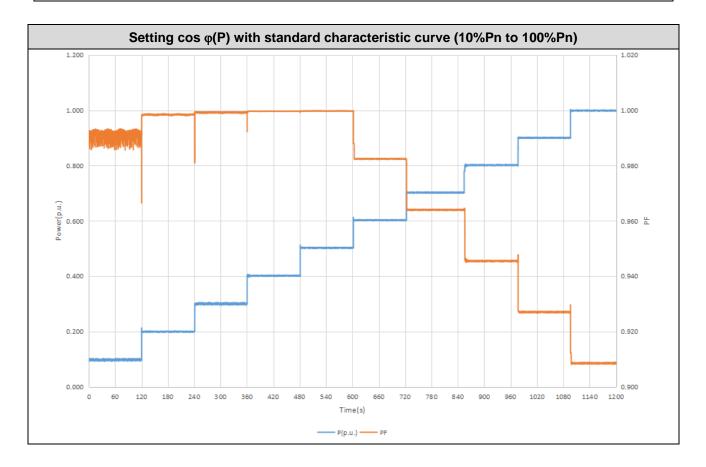
TRF No. NRS 097-2-1(01)


9.4 Test 4: Semicircular Curve (S=100%Sn)

The test was not available due to the manufacturer doesn't provide this operation model.

9.5 Test 5: Settable to operate according to a characteristic curve

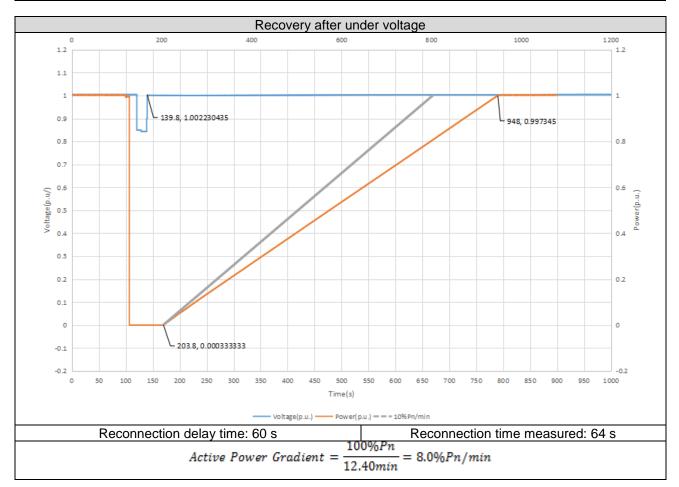
It has also to be verified the capability of the inverter for providing a fixed value of the power factor in function of the active power according to the next picture:


0.9 leading to 0.9 lagging is more restrictive than 0.95 as the standard required.

The results are offered in the table below (Note: 10%Pn have not measured in following test):

Setting $\cos \varphi(P)$ with the standard characteristic curve (20%Pn to 100%Pn)						
Active Power Setting (% P _{Emax})	Active Power Measured (p.u.)	Reactive Power Measured (p.u.)	cos φ Measured	Desired cos φ	Δ cos φ (<0.01)	Transient period (<10s)
10	0.098	0.011	0.991	1.000	-0.009	\backslash
20	0.200	0.009	0.998	1.000	-0.002	\searrow
30	0.301	0.008	0.999	1.000	-0.001	0.2s
40	0.402	0.011	1.000	1.000	0.000	0.2s
50	0.502	0.012	1.000	1.000	0.000	0.2s
60	0.603	-0.114	0.982	0.980	0.002	0.2s
70	0.702	-0.194	0.964	0.960	0.004	0.2s
80	0.801	-0.276	0.945	0.940	0.005	0.2s
90	0.900	-0.364	0.927	0.920	0.007	0.2s
100	0.999	-0.459	0.909	0.900	0.009	0.2s

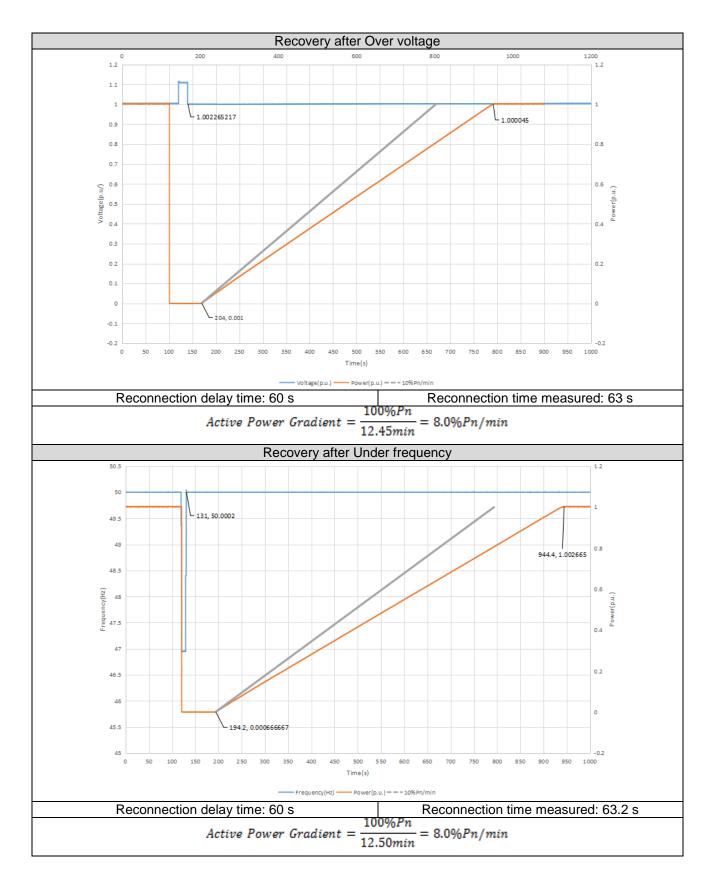
10. Synchronization and Response to utility recovery


Synchronization have been measured according to Clause 4.1.12 and Clause 4.2.4 of the standard.

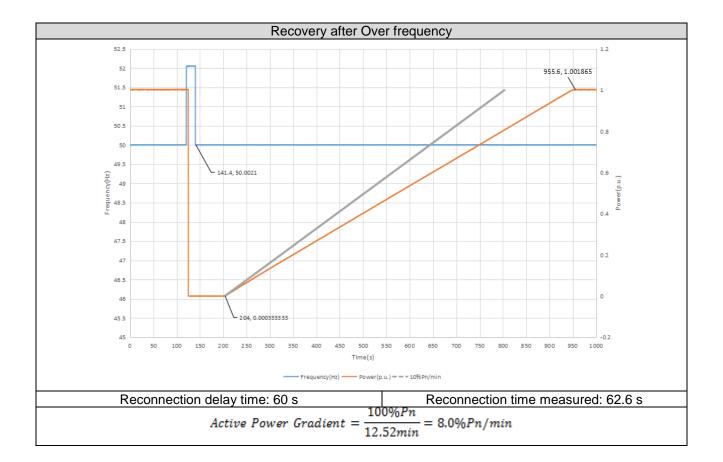
The embedded generator shall ensure synchronisation before re-energizing at all times.

After a voltage or frequency out-of-range condition that has caused the embedded generator to cease energizing the utility network, the generator shall not re-energize the utility network until the utility service voltage and frequency have remained within the specified ranges for a continuous and uninterrupted period of 60 s.

Controllable generators may reconnect immediately after the 60 s delay confirming recovery of the system voltage and frequency at a maximum rate of 10 % of rated power per minute, i.e. full power output will only be reached after 10 minutes.


Reconnection threshold	Gradient (ΔP) desired (%Pn/min)	Gradient measured (%Pn/min)
Overvoltage	≤ 10%	8.0%
Undervoltage	≤ 10%	8.0%
Overfrequency	≤ 10%	8.0%
Underfrequency	≤ 10%	8.0%

TRF No. NRS 097-2-1(01)



TRF No. NRS 097-2-1(01)

11. Electromagnetic compatibility (EMC)

This requirement has been considered according to Clause 4.1.13 of the standard.

The compliances with these requirements are stated in the following test report:

- Test Report BL-DG2060517-401 on 2020/07/09 which issued by Shenzhen BALUN Technology Co., Ltd

12. Mains signalling (e.g. PLC and ripple control)

This requirement has been considered according to Clause 4.1.14 of the standard.

The EUT is not use PLC-based communication. This clause is not applicable.

13. Safety disconnect from utility network

This requirement has been considered according to Clause 4.2.2 of the standard.

The safety requirements in accordance with IEC 62109-1:2010 and IEC 62109-2:2011.

The compliances with these requirements are stated in the following test report:

Test Report BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd

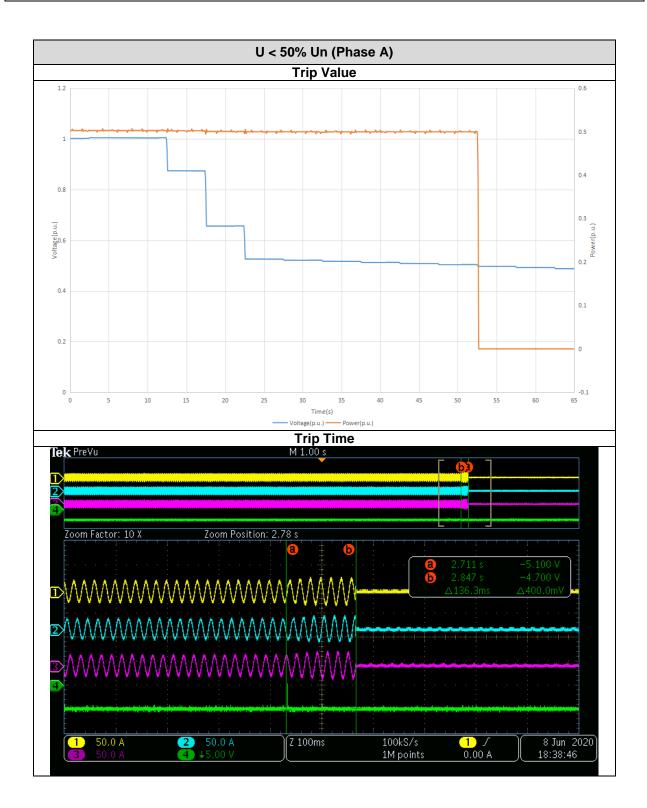
13.1 Disconnection device (previously disconnection switching unit)

Disconnection device have been considered according to Clause 4.2.2.2 of the standard

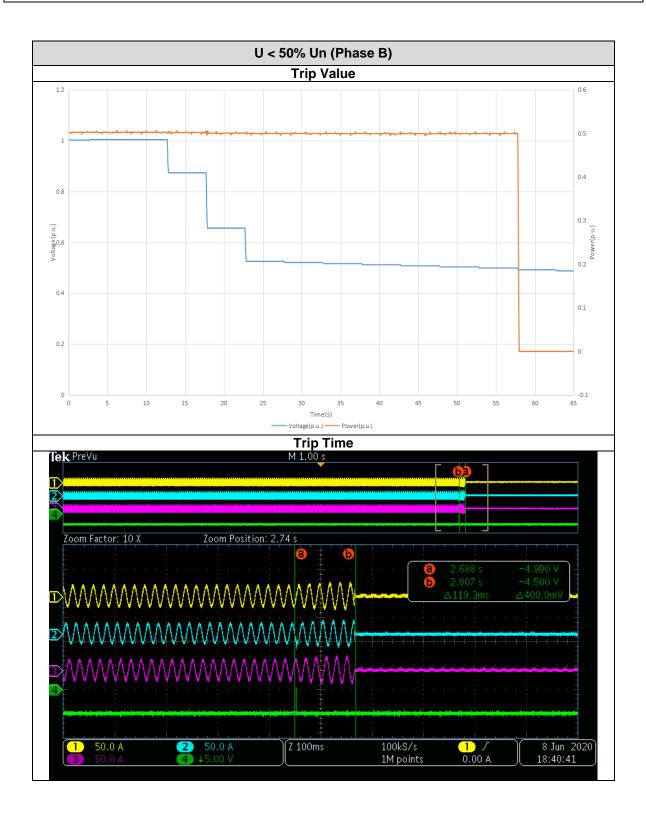
The output is switched off redundant by two relays in serial on both line and neutral. This assures that the opening of the output circuit can operate in case of single fault.

13.2 Overvoltage and undervoltage

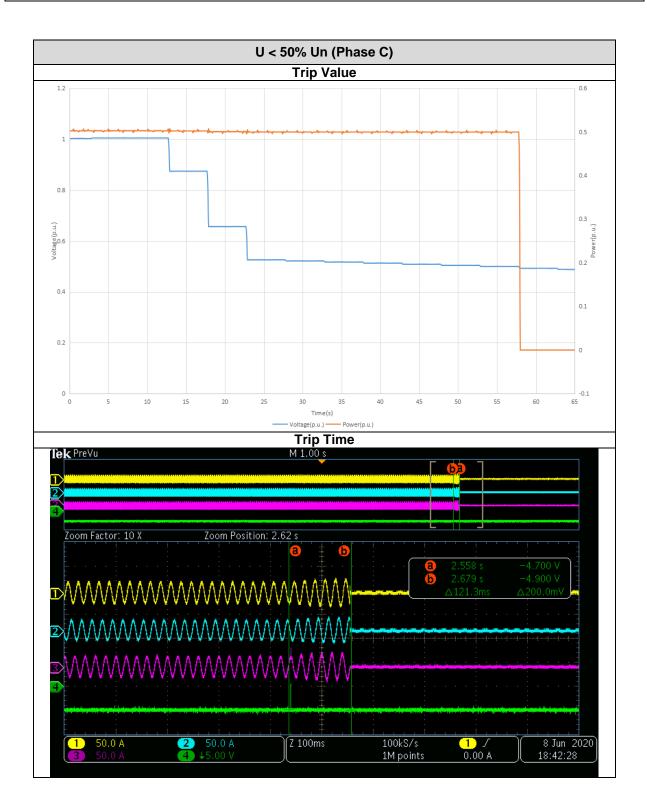
Disconnection device have been considered according to Clause 4.2.2.3.2 of the standard

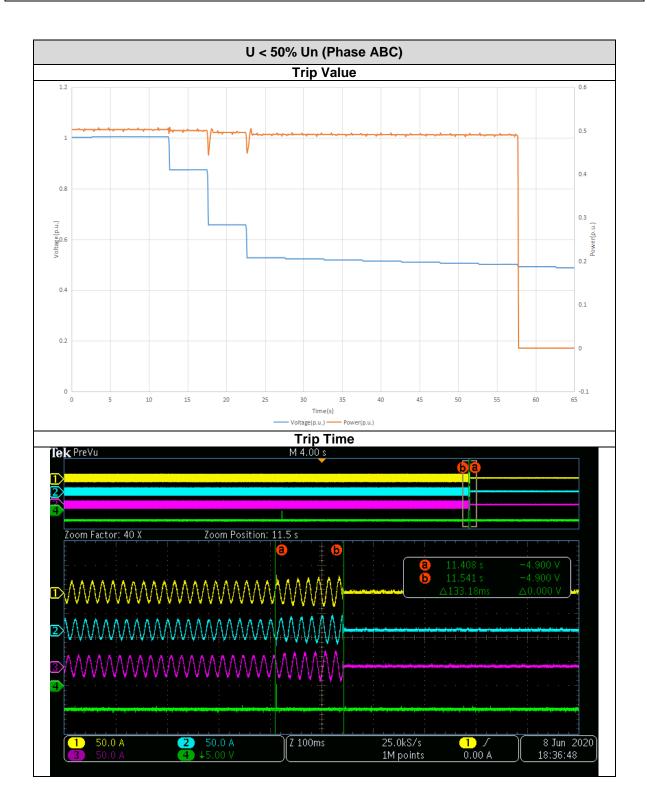

The disconnection time should comply with following table:

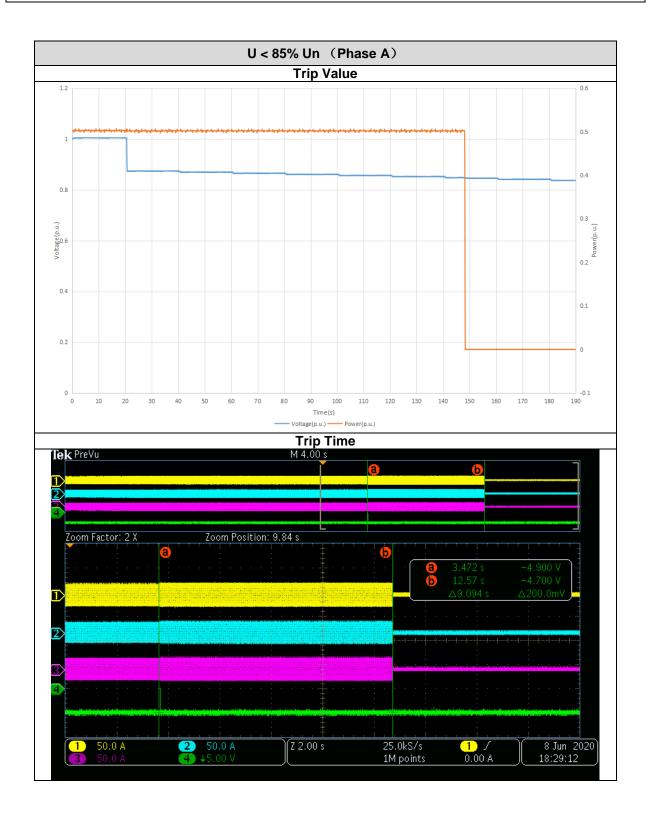
1	2				
Voltage range (at point of connection)	Maximum trip time S				
V < 50 %	0,2 s				
50 % ≤ V < 85 %	10 s				
85 % ≤ ∨ ≤ 110 %	Continuous operation				
110 % < V < 115 %	40 s				
115% ≤ V < 120%	2 s				
120 % ≤ V	0,16 s				
NOTE If multi-voltage control settings are not possible, the more stringent trip time should be implemented, e.g. 2 s between 110% and 120% of voltage.					

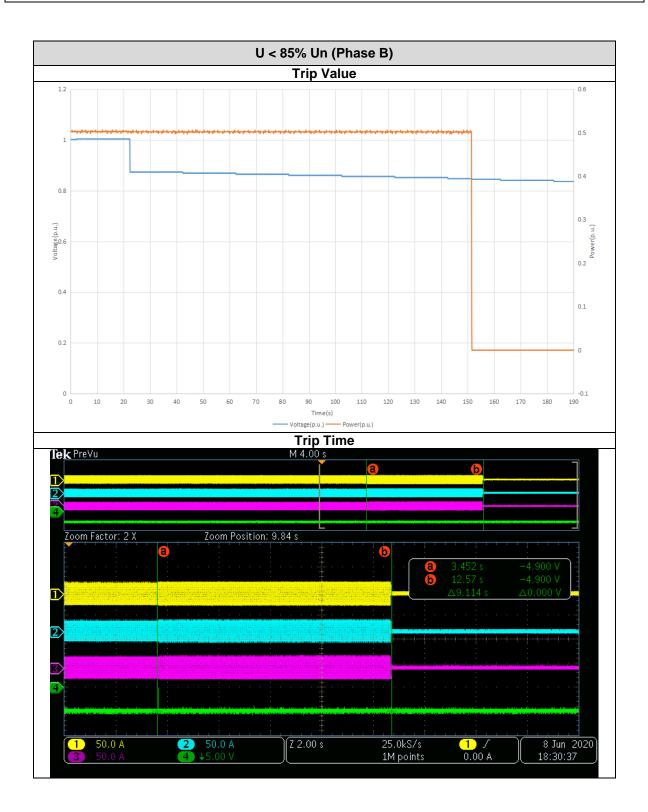

The following table shows the test results:

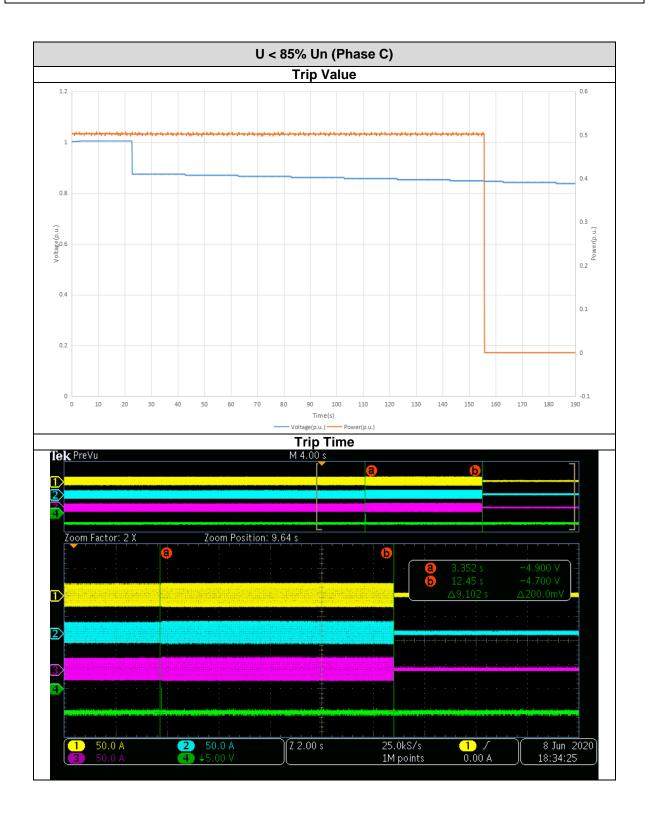
Voltage level	Phase	Voltage Setting (p.u.)	Voltage Trip (p.u.)	Trip time limit (ms)	Time measured (ms)
	А		0.497		136
U < 50% Un	В	0.500	0.493	200	119
0 < 50 % 011	С	0.500	0.494	200	121
	ABC		0.497		133
	А		0.846		9094
U < 85% Un	В	0.950	0.845	10000	9114
0 < 05 /0 011	С	0.850	0.846		9102
	ABC		0.845		9106
	А	1.100	1.102	40000	38300
U > 110% Un	В		1.103		38350
0 > 110 /0 011	С		1.099		38340
	ABC		1.098		38410
	А		1.150	2000	1633
U > 115% Un	В	1.150	1.150		1627
0 > 113 /0 011	С	1.150	1.150		1625
	ABC		1.150		1629
	А		1.203		83
U > 120% Un	В	1.200	1.202	160	90
0 > 120% 011	С		1.198		75
	ABC		1.198		87

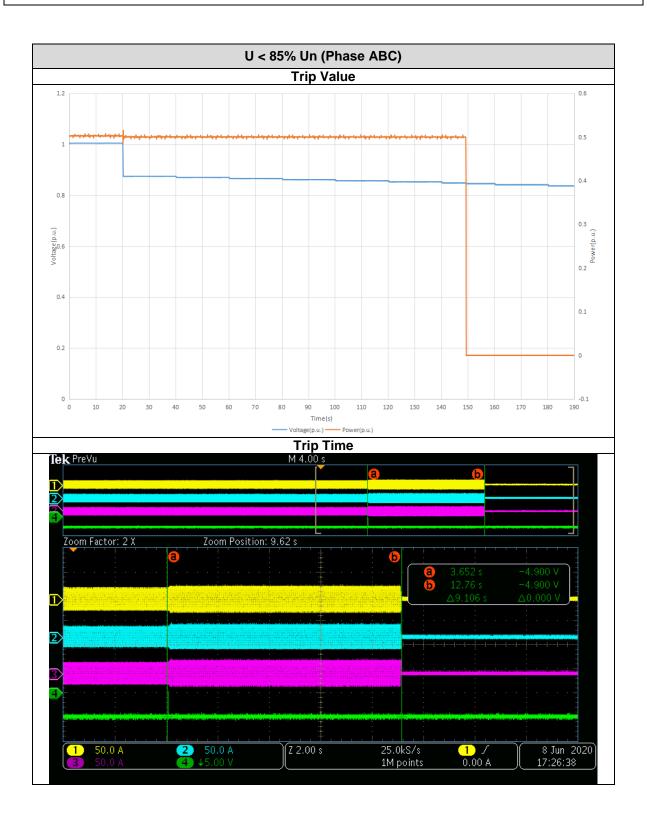


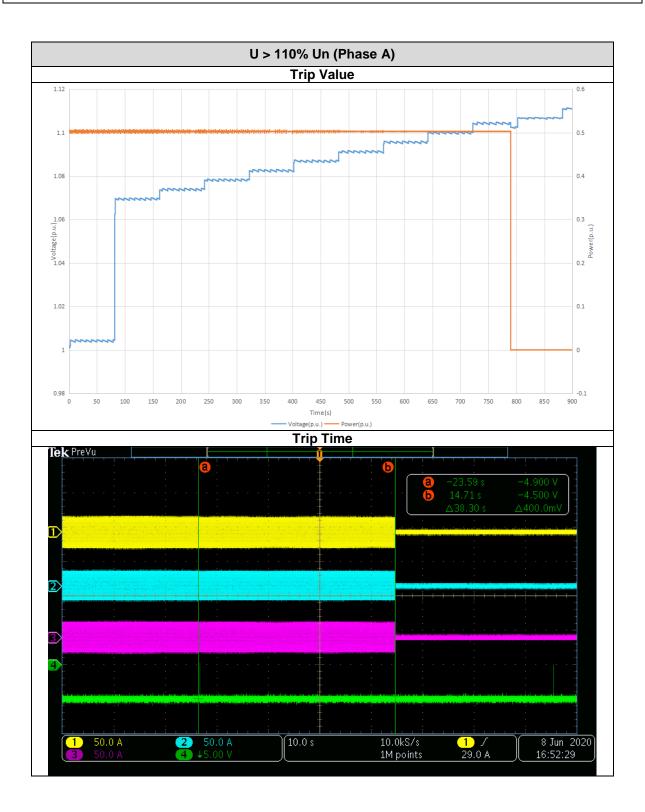


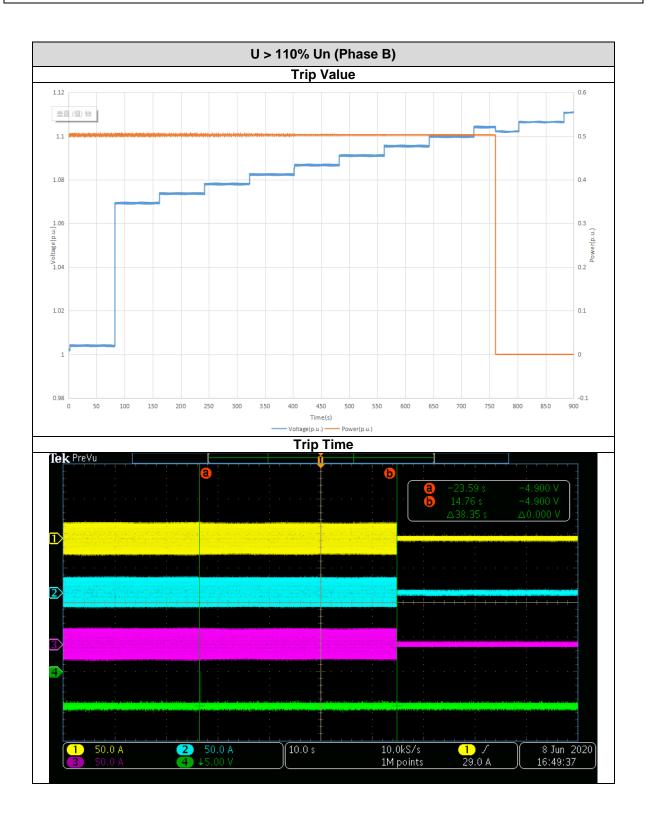


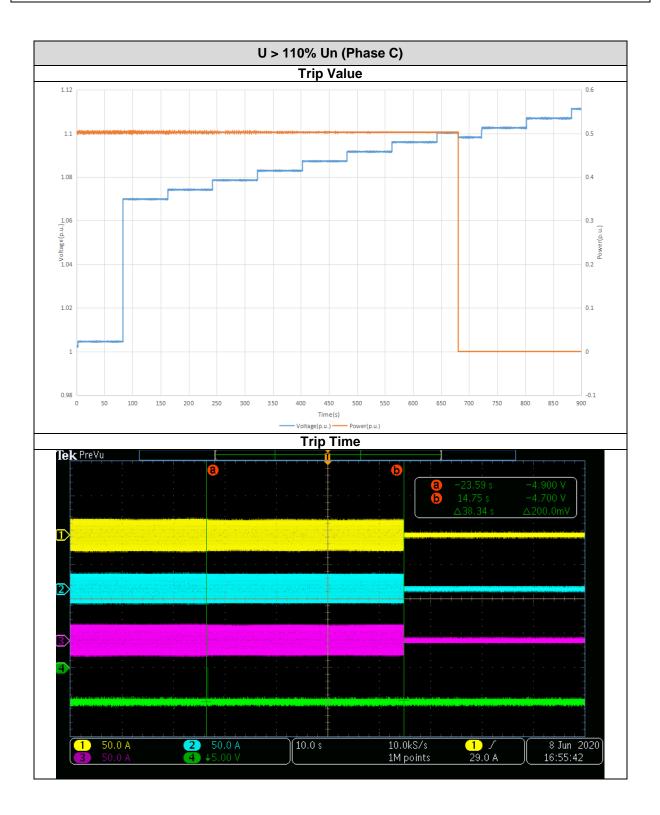


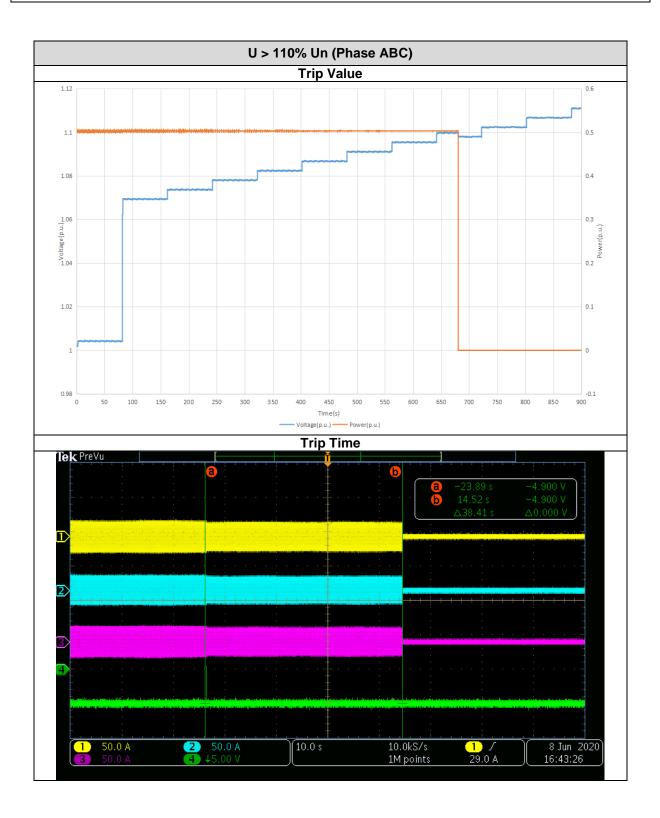


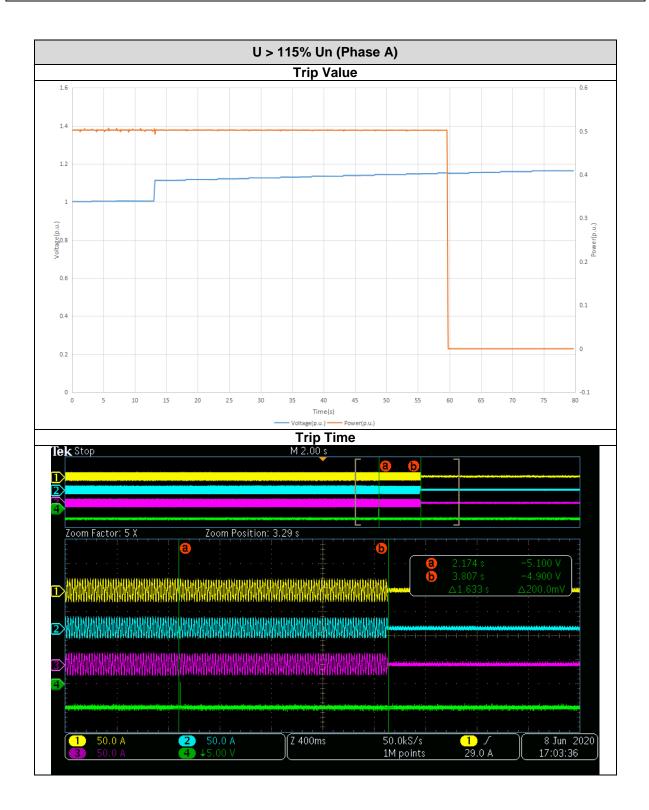


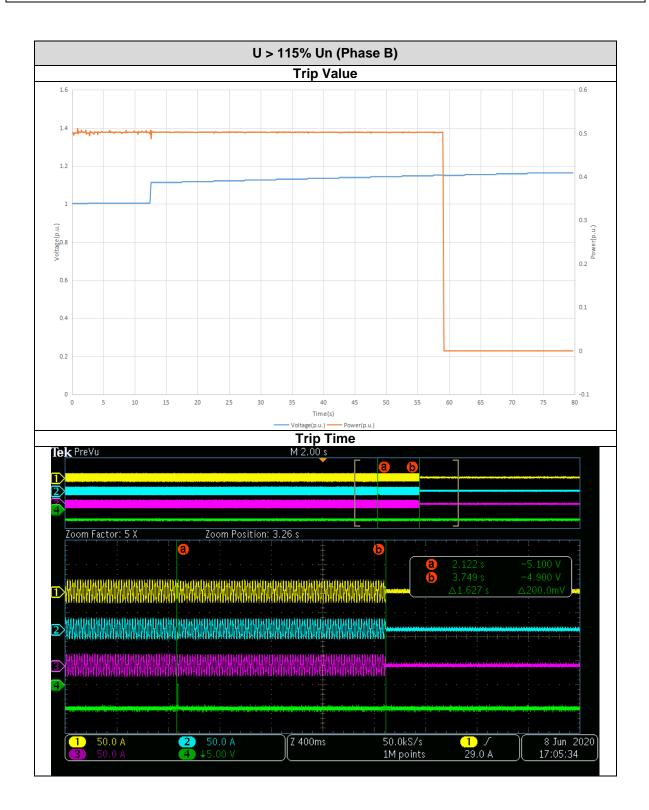


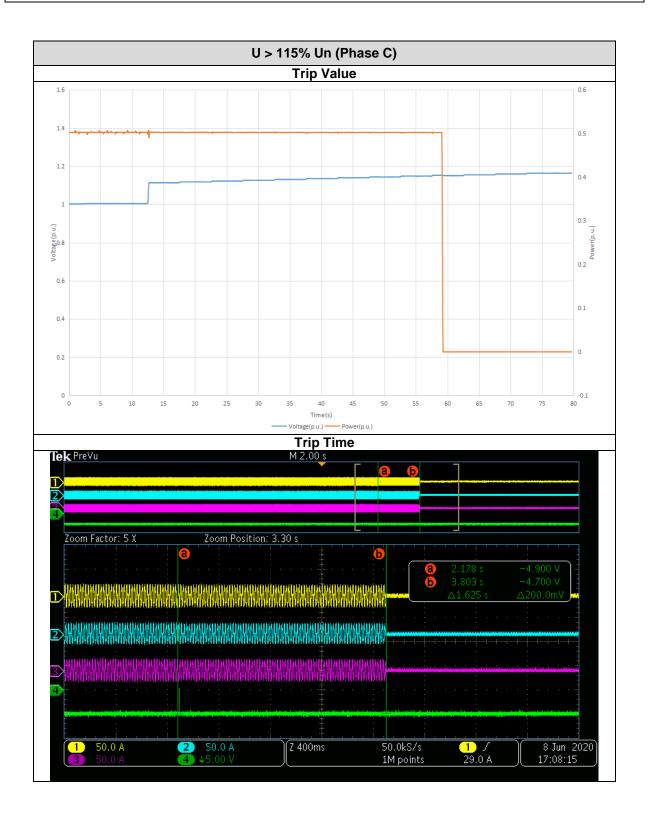


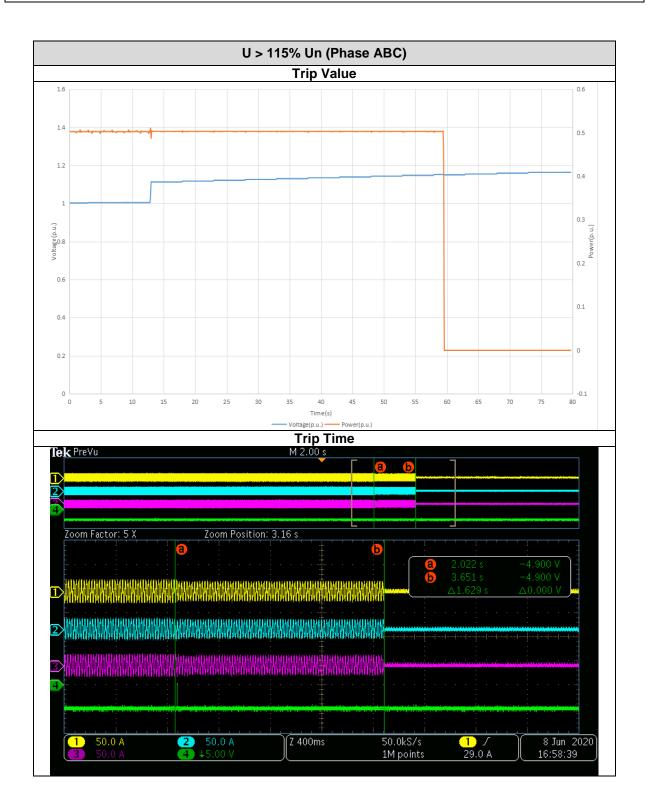


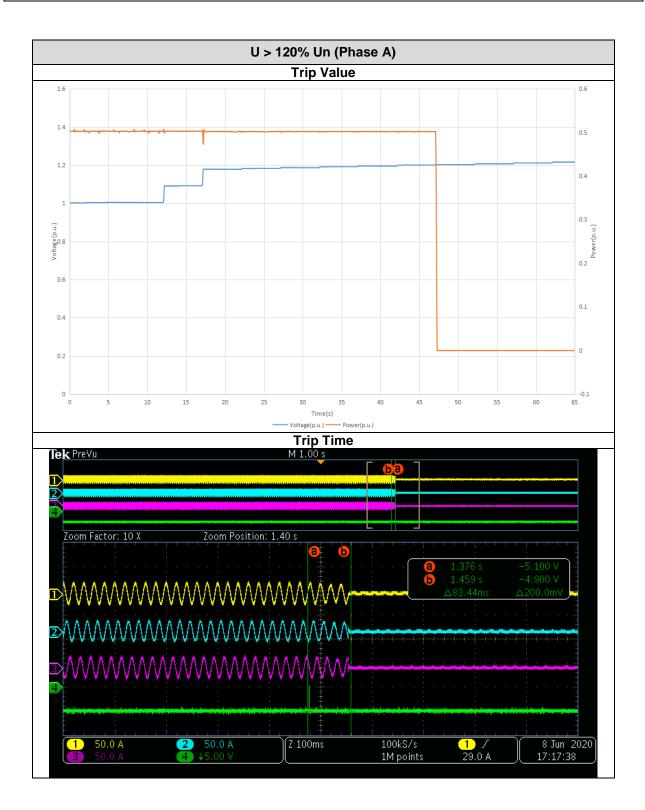


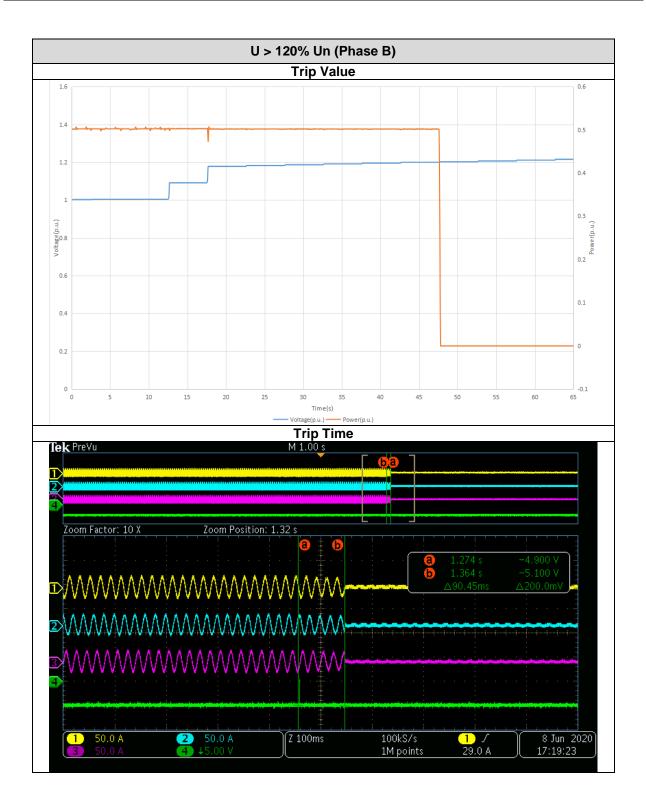


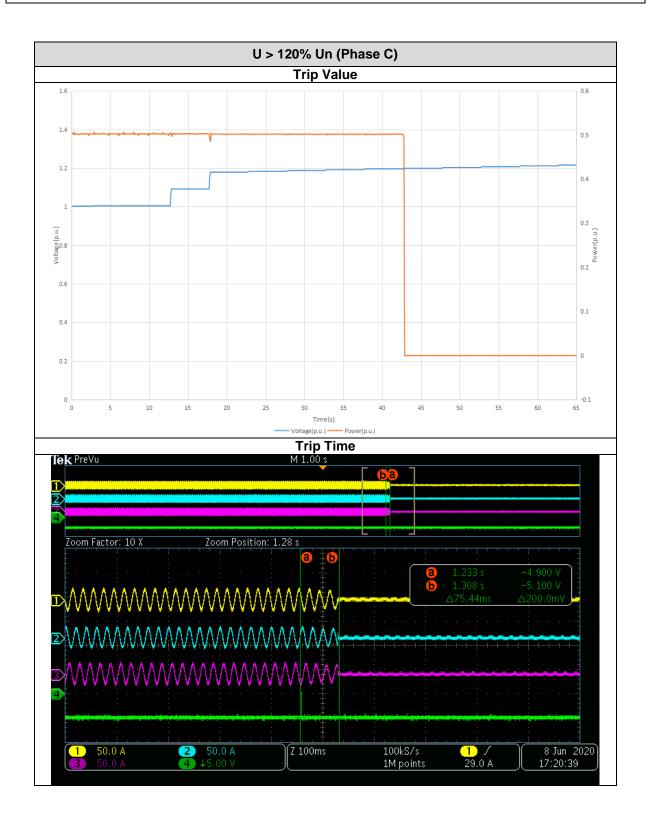


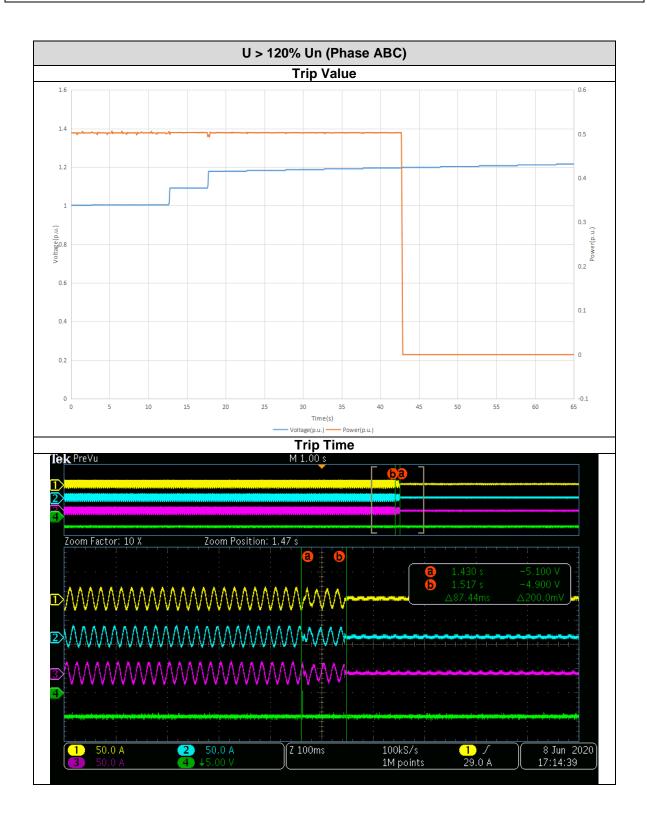


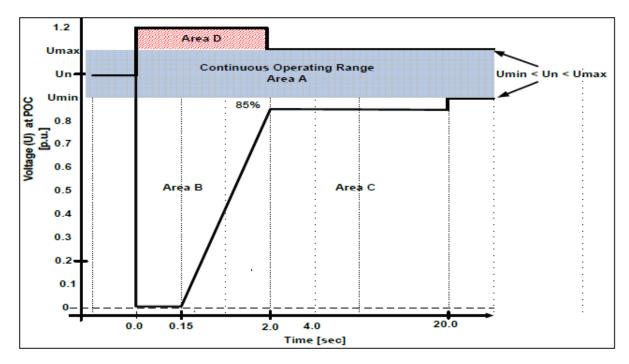












13.3 HLVRT

Disconnection device have been considered according to Clause 4.2.2.3.2 of the standard, the EUT is defined as category A2 and A3. Category A3 SSEG shall be able to ride through low and/or high voltage events in accordance with the RPP Grid Code.

RPPs of *Categories A3, B* and *C* shall be designed to withstand and fulfil, at the *POC*, voltage conditions described in this section and illustrated in Figures 4, 4a, 4b and 5 below. The Area D is only applicable to *category C* RPPs.

Figure 4: Voltage Ride through Capability for the RPPs of Category A3, B and C utilising non-synchronous machines

In connection with symmetrical fault sequences in areas B and D of Figures 4, 4a and 4b, the *RPP* (other than synchronous generating units) shall have the capability of controlling the reactive current, as illustrated in Figure 5. The following requirements shall be complied with:

(a) Area A: The RPP shall stay connected to the network and uphold normal reduction.

(b) Area B: The RPP shall stay connected to the network and in addition:

(i) RPPs of category A3 shall not inject any reactive current into the network;

(ii) *RPPs* of *category B* and *category C* shall provide maximum voltage support by supplying a controlled amount of reactive current so as to ensure that the *RPP* assists in stabilizing the voltage as shown in Figure 5;
(iii) Inverter driven *RPPs* of *category B* and *category C* shall be able to disable reactive current support functionality at the request of *SO* or local network operator.

(c) Area D: The *RPP* shall stay connected to the network and provide maximum voltage support by absorbing a controlled amount of reactive current so as to ensure that the *RPP* helps to stabilize the voltage within the design capability offered by the *RPP*, see Figure 5.

TRF No. NRS 097-2-1(01)

(d) Area E (Figure 5): Once the voltage at the *POC* is below 20%, the *RPP* shall continue to supply reactive current within its technical design limitations so as to ensure that the *RPP* helps to stabilize the voltage. Disconnection is only allowed after conditions of Figures 4, 4a and 4b have been fulfilled.

Control shall follow Figure 5 so that the reactive current follows the control characteristic with a tolerance of $\pm 20\%$ after 60 ms.

The supply of reactive power has first priority in area B, while the supply of active power has second priority. Active power shall be maintained during voltage drops, but a reduction in active power within the *RPP*'s design specifications is required in proportion to voltage drop for voltages below 85%.

Upon clearance of fault each *RPP* shall restore active power production to at least 90% of the level available immediately prior to the fault within 1 second.

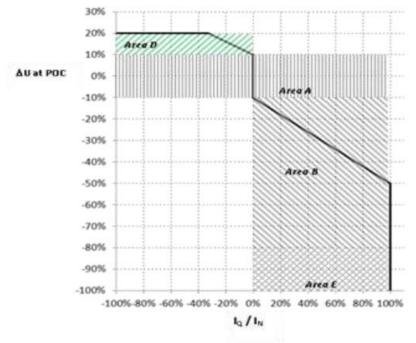
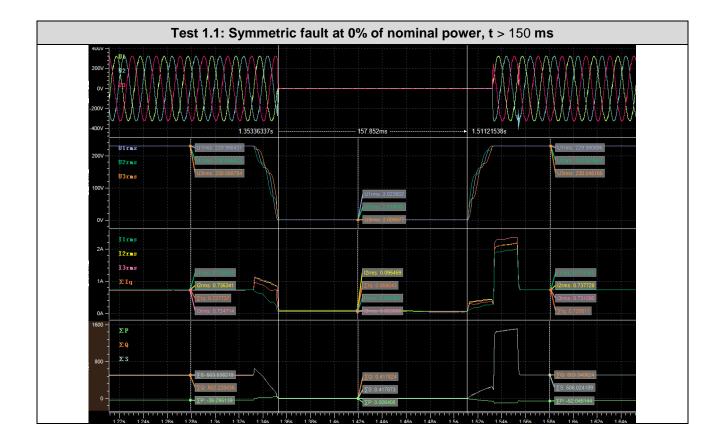
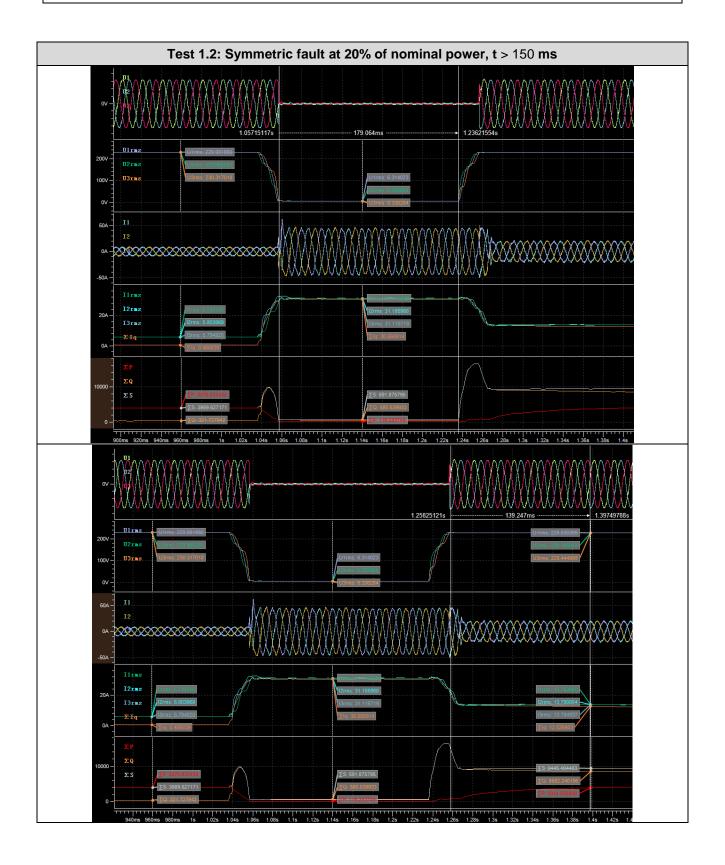


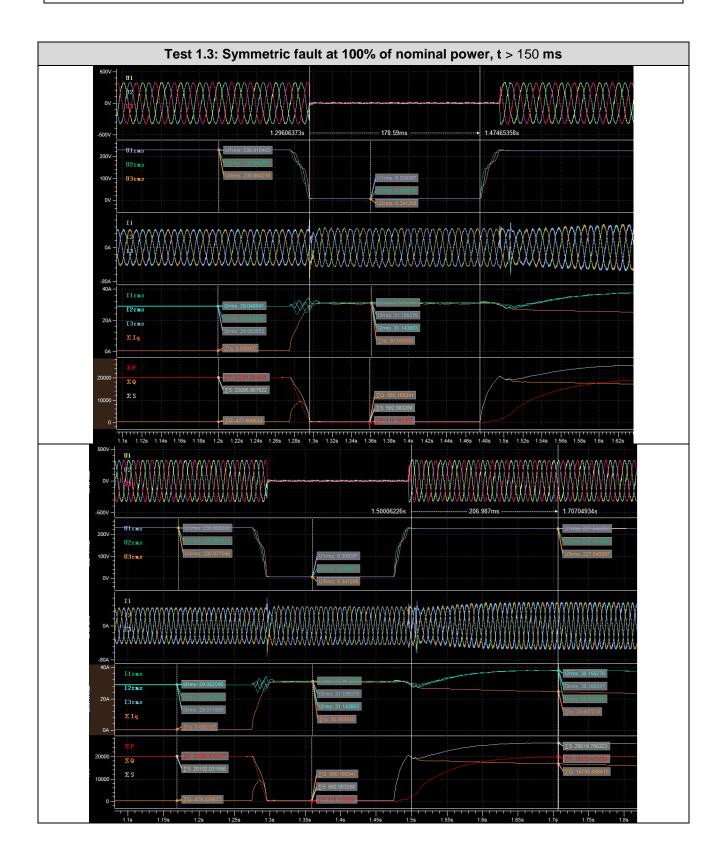
Figure 5: Requirements for Reactive Power Support, I_{Q} , during voltage drops or peaks at the POC

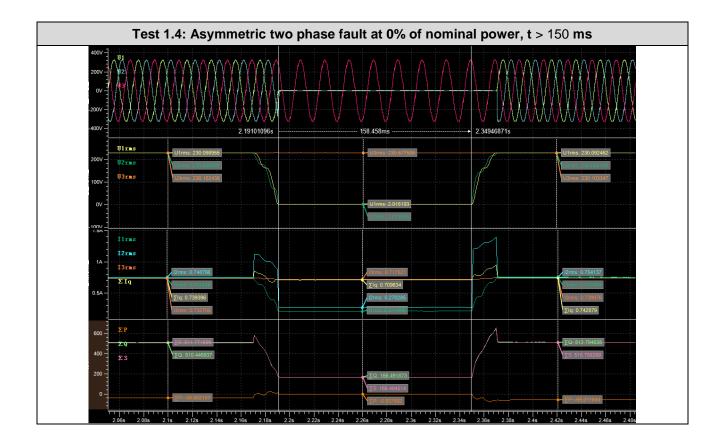


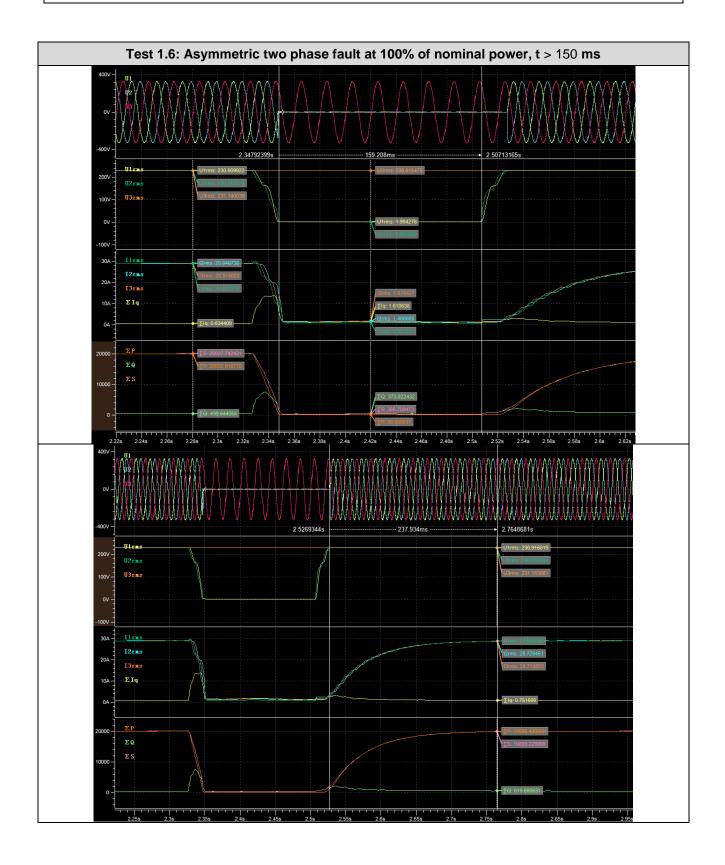
Test	Fault Type Output Power (%Pn)	Residual Voltage (%Un)		Fault duration (ms)		Time Measured (ms)	
Nr.		Desired	Measured	Desired	Measured	Active power recovery	Reactive power rise during fault
Test 1.1	3-Phase Fault No load		0.9%		158	NA	NA
Test 1.2	3-Phase Fault Partial load (20%)		2.7%		179	139	NA
Test 1.3	3-Phase Fault Full load	0 %	2.7%		178	207	NA
Test 1.4	2-Phase Fault No load		0.9%		158	NA	NA
Test 1.5	2-Phase Fault Partial load (20%)		0.9%	> 150	159	216	NA
Test 1.6	2-Phase Fault Full load		0.9%		159	238	NA
Test 1.7	1-Phase Fault No load		0.9%		158	NA	NA
Test 1.8	1-Phase Fault Partial load (20%)		0.8%		159	219	NA
Test 1.9	1-Phase Fault Full load		0.8%		160	267	NA

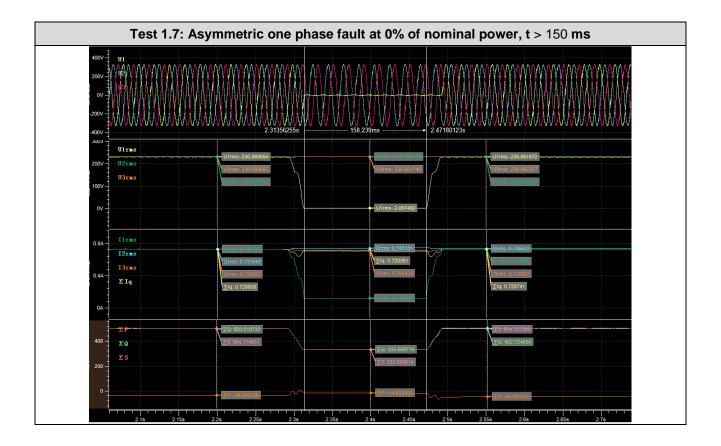

The results of reactive current in Test 1.2 and 1.3 are showing in the table below:

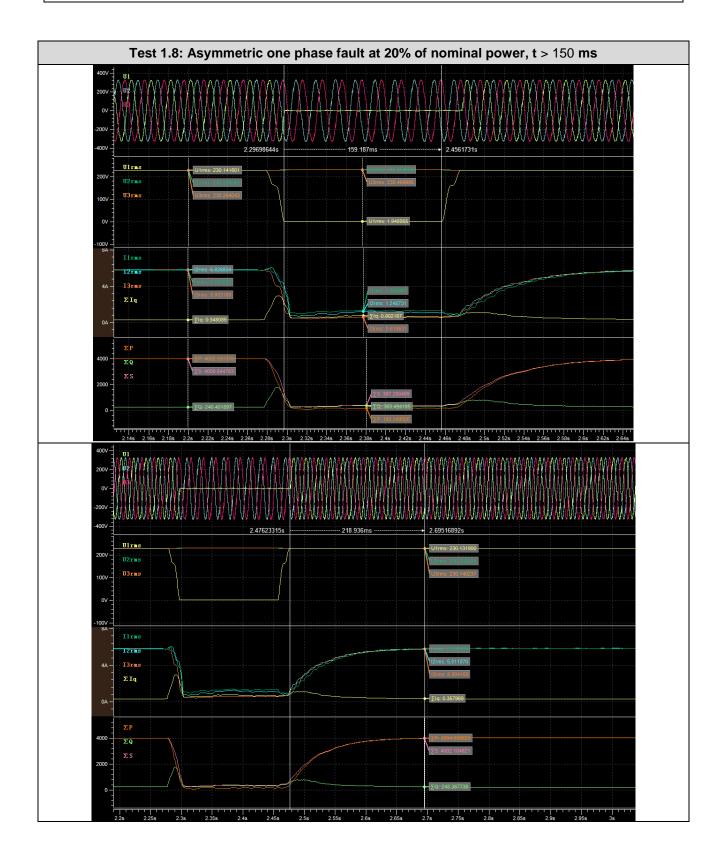
Test Nr.	Fault Type Output Power (%Pn)	lq required (%ln)	lq measured (%In)
Test 1.2	3-Phase Fault Partial load (20%)	400.0/ . 200/	105.4%
Test 1.3	3-Phase Fault Full load	100 % ± 20%	105.4%

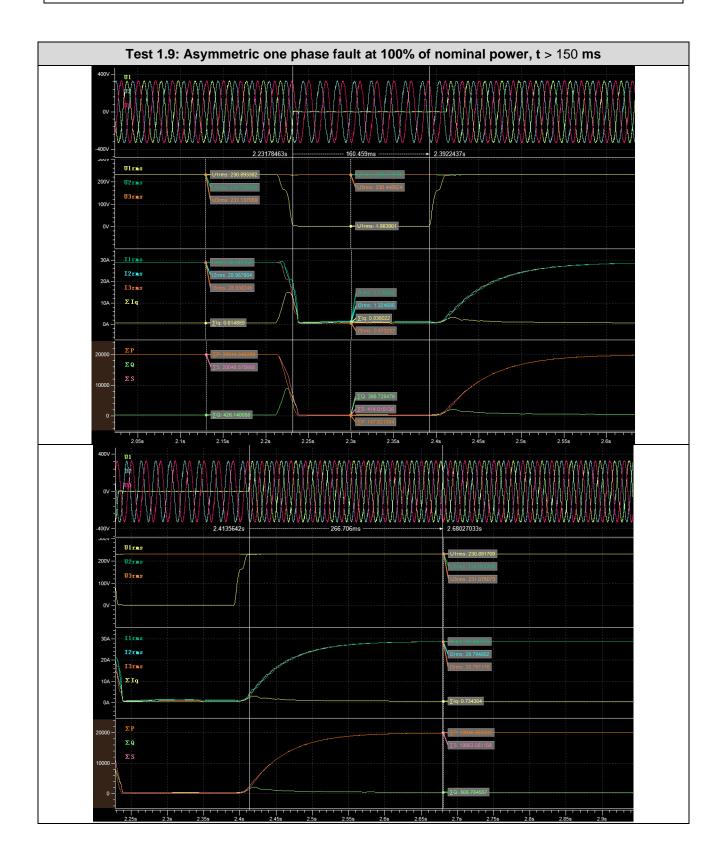


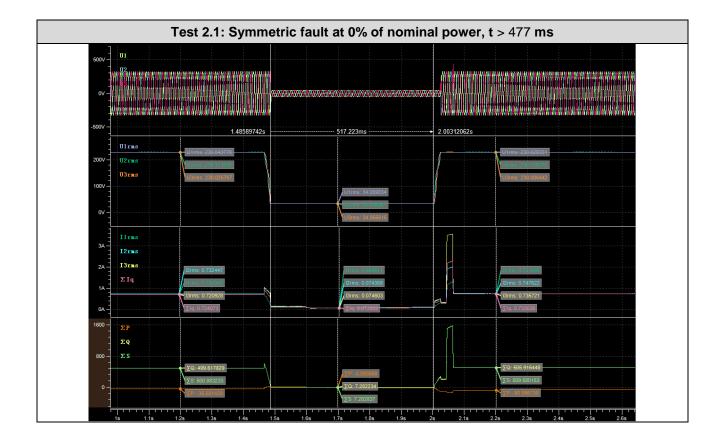




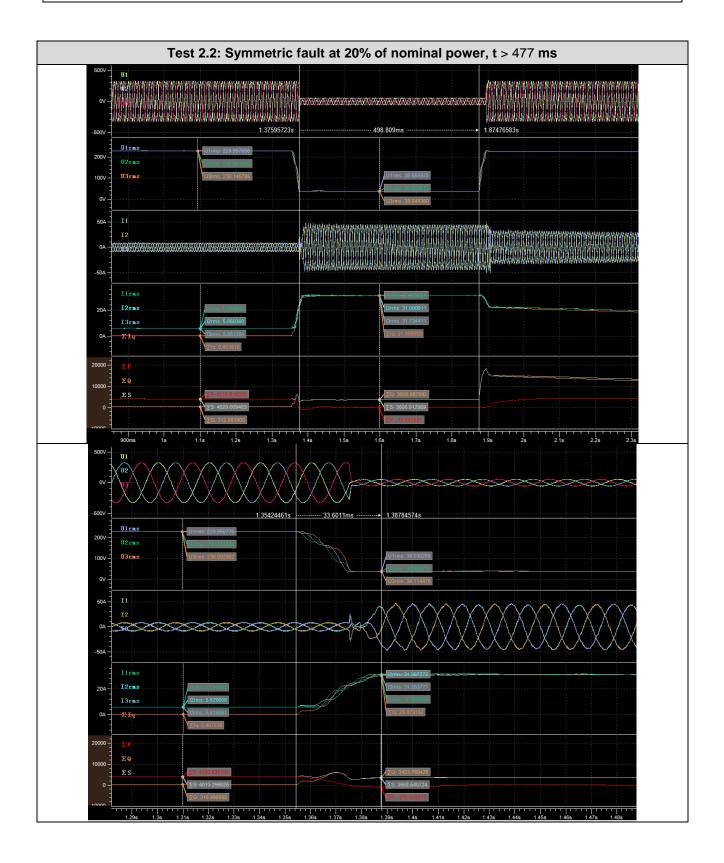




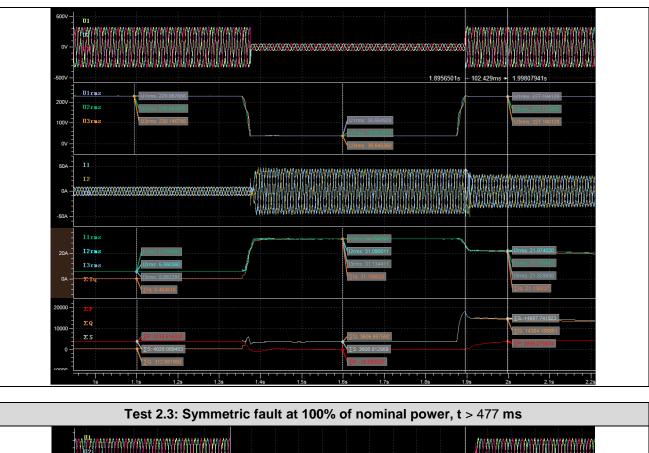

Page 82 of 97

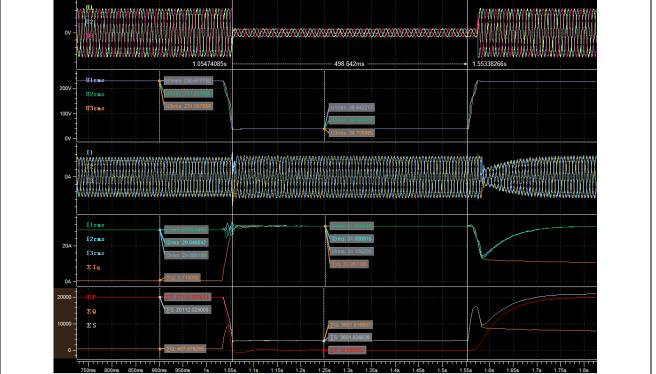


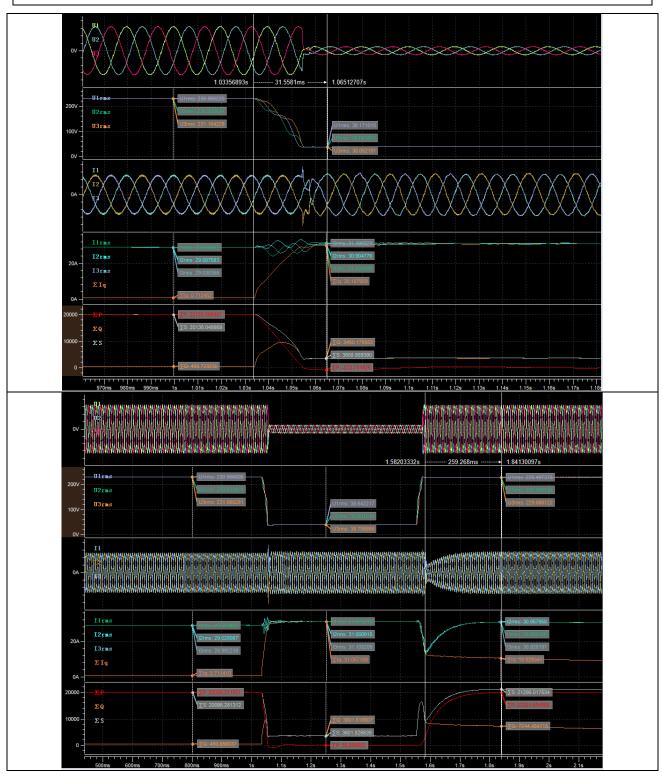
Test	Fault Type Output Power (%Pn)	Residual Voltage (%Un)		Fault duration (ms)		Time Measured (ms)	
Nr.		Desired	Measured	Desired	Measured	Active power recovery	Reactive power rise during fault
Test 2.1	3-Phase Fault No load		14.8%		517	NA	NA
Test 2.2	3-Phase Fault Partial load (20%)		16.8%		498	102	33
Test 2.3	3-Phase Fault Full load		16.8%		498	259	31
Test 2.4	2-Phase Fault No load	15 %	15.0%		516	NA	NA
Test 2.5	2-Phase Fault Partial load (20%)		15.0 %	> 477	516	186	NA
Test 2.6	2-Phase Fault Full load		15.0%		517	255	NA
Test 2.7	1-Phase Fault No load		15.0%		520	NA	NA
Test 2.8	1-Phase Fault Partial load (20%)		15.0%		520	188	NA
Test 2.9	1-Phase Fault Full load		15.0%		519	261	NA

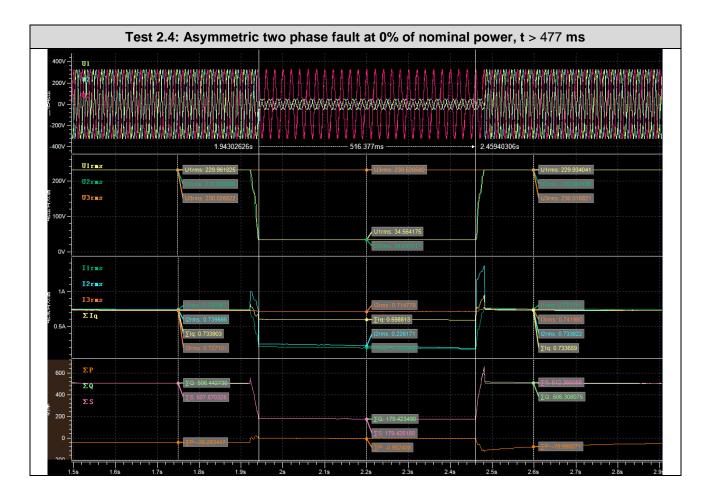

The results of reactive current in Test 2.2 and 2.3 are showing in the table below:

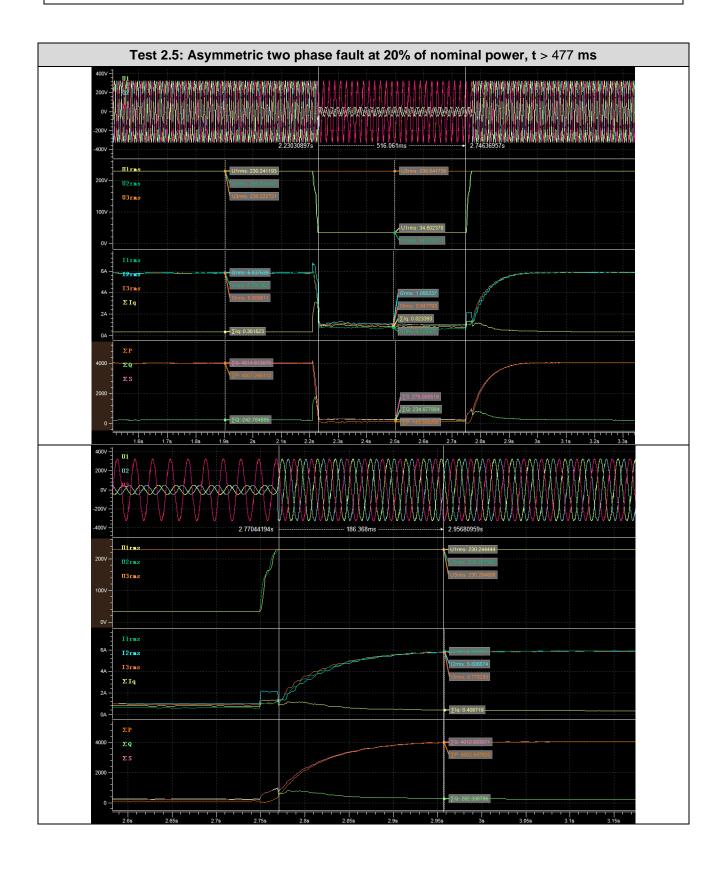
Test Nr.	Fault Type Output Power (%Pn)	lq required (%ln)	lq measured (%In)
Test 2.2	3-Phase Fault Partial load (20%)	400.04 0004	107.3%
Test 2.3	3-Phase Fault Full load	100 % ± 20%	107.1%

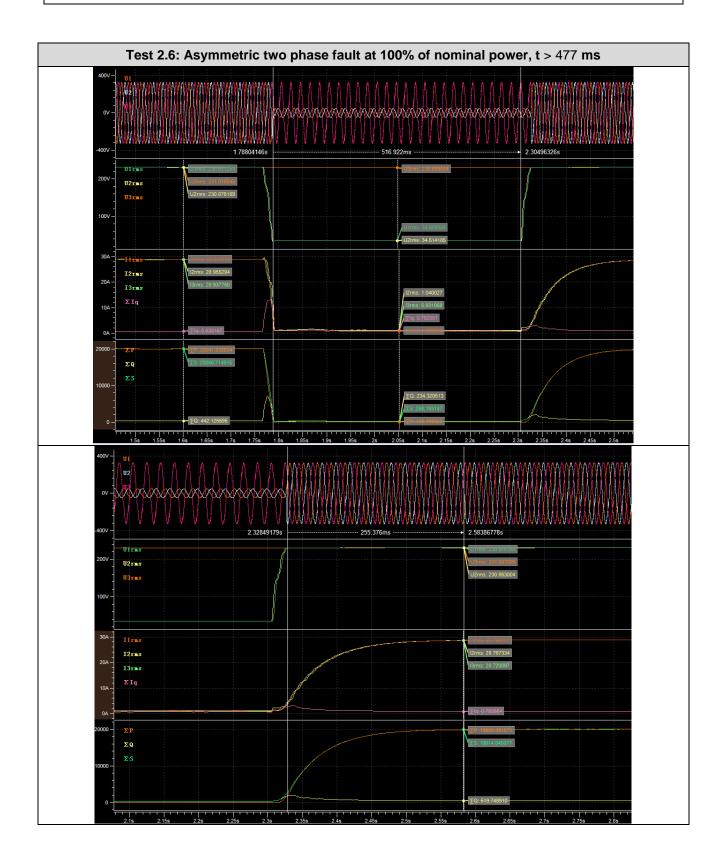


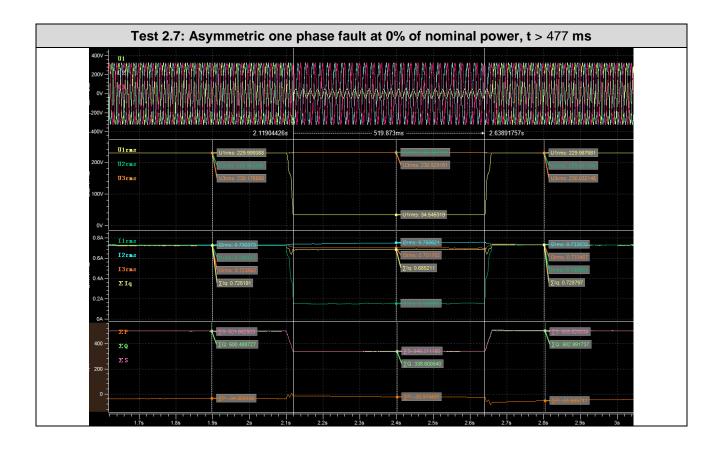


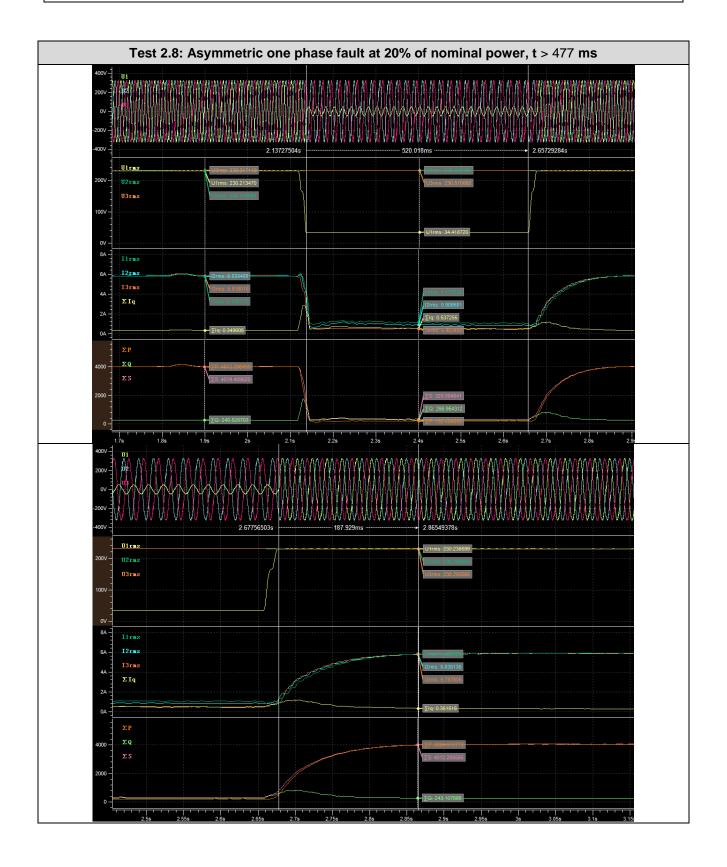





Page 89 of 97







Page 93 of 97

13.4 Prevention of islanding

Prevention of islanding tests have been measured according to Clause 4.2.2.4 of the standard.

An islanding condition shall cause the embedded generator to cease to energize the utility network within 2 s, irrespective of connected loads or other embedded generators.

Active islanding detection used for EUT. The test method according to IEC 62116: 2014. Test A is at full power. Test B is at 50%Pn. Test C is at 30%Pn

The compliances with these requirements are stated in the following test report:

 Test Report GZES200601936102 on 2020/06/23 which issued by SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

14. Isolation

Requirements are stated in clause 4.2.5 of this standard.

The inverter has one accessible switch in the DC side with one pole for each phase and accessible switch in the AC side with one pole for each phase

15. Earthing

Requirements are stated in clause 4.2.6 of this standard.

The safety requirements in accordance with IEC 62109-1:2010 and IEC 62109-2:2011.

The compliances with these requirements are stated in the following test report:

 Test Report BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd

16. Labelling

All labelling requirements have been checked according with point 4.2.7 of the standard.

All necessary information related to the procedure for disconnection and isolation of the equipment it is correctly included in the inverter manual. A symbol of the obligation to read the manual is included in the inverter label:

17. Robustness requirements

Robustness requirement have been considered according to Clause 4.2.10 of the standard.

The safety requirements in accordance with IEC 62109-1:2010 and IEC 62109-2:2011.

The compliances with these requirements are stated in the following test report:

 Test Report BL-DG2060127-B01 and BL-DG2060127-B01 attachment 1 on 2020/07/02 which issued by Shenzhen BALUN Technology Co., Ltd

TRF No. NRS 097-2-1(01)

List of test equipment used:

No	Test Equipment	Equipment model	Equipment No.	Calibration due date
1	Simulation of ac power supply	AFC33300T-S	BZ-DGD-L011	
2	Solar IV simulator	WPVD-30KW	BZ-DGD-L012	
3	Power analyser	PA6000H	BZ-DGD-L059	2020\11\06
4	Oscilloscope	MSO4054B	BZ-DGD-L064	2021\03\04

--- End of test report---